

Going Beyond the Box | Craig Sutherland

MICROSOFT
CUSTOMISING

CRUISECONTROL.NET

Customising CruiseControl.NET Page 1

TABLE OF CONTENTS

Introduction ... 4

What is CruiseControl.NET? ... 4

What Does This Document Cover? .. 4

Versions .. 5

About the Author .. 5

Overview .. 6

The Big Picture .. 6

The Server... 6

The Project .. 8

Loading ... 8

Build Sequence .. 9

The Dashboard .. 11

The Libraries .. 11

Project Item Basics... 13

Required Libraries .. 13

Assembly Name .. 13

NetReflector ... 13

Basics ... 13

Attribute Usage ... 14

Configuration Options ... 15

Pre-processing ... 15

Tasks/Publishers .. 17

Overview .. 17

Historical Note .. 17

The Basics ... 17

Getting Information .. 18

Returning Results .. 20

Passing Configuration Options ... 20

Build Progress Information ... 22

Additional Interfaces .. 23

Base Classes.. 24

Advanced Results ... 26

Executing External Applications .. 29

Triggers ... 31

Overview .. 31

The Basics ... 31

Basic Example .. 31

Passing Configuration Options ... 33

Post Build Processing ... 34

Validating the Configuration .. 36

Customising CruiseControl.NET Page 2

Nested Triggers ... 37

Source Control Blocks .. 41

Overview .. 41

The Basics ... 41

A Basic Source Control Block .. 42

To and From Results ... 44

Passing Data Between Calls ... 45

Parsers ... 45

Abstract Base Classes.. 48

Labellers ... 51

Overview .. 51

The Basics ... 51

Basic Example .. 51

Additional Interfaces .. 52

A Common Base .. 53

State Managers .. 55

Overview .. 55

The Basics ... 55

Basic Example .. 55

More Details ... 57

Server Extensions .. 58

Overview .. 58

The Basics ... 58

Configuring an Extension .. 59

Handling Events .. 60

Passing Configuration .. 62

Common Components ... 64

IIntegrationResult: Integration Results .. 64

Project and Build Information ... 64

Status Information .. 66

Modifications ... 69

Historical Information .. 70

Logging ... 71

Helper Methods... 72

Integration Properties ... 72

Further Information .. 74

Appendix 1: Visual Basic Examples ... 75

Introduction ... 75

Tasks ... 75

DemoTask .. 75

HelloWorldTask .. 77

Customising CruiseControl.NET Page 3

HelloWorldTask2 .. 78

CallHelloWorldTask ... 79

Triggers ... 80

FileChangedTrigger .. 80

Source Control Blocks... 82

NewFileSystemSourceControl .. 82

IndexFileSourceControl ... 84

GetMyCodeSourceControl .. 86

Labellers ... 87

RandomLabeller .. 87

RandomLabeller2 .. 88

State Managers .. 89

PlainTextStateManager .. 89

Server Extensions .. 90

Customising CruiseControl.NET Page 4

INTRODUCTION

WHAT IS CRUISECONTROL.NET?

CruiseControl.NET was primarily designed as a Continuous Integration (CI) server.
A CI server is a piece of software that will continuously monitor one or more source
control repositories and automatically trigger a build if any changes are detected.

But CruiseControl.NET is so much more than just a CI server – at its core it is a
highly customisable scheduling engine. While CruiseControl.NET provides for
continuous integration out of the box, it can be customised to perform any type of
automated processes.

WHAT DOES THIS DOCUMENT COVER?

This document covers how CruiseControl.NET can be customised. There are two
components of CruiseControl.NET that can be customised: the server and the
dashboard.

Most of the customisations for the server are at the project level. A new item can be
added and configured – CruiseControl.NET will pick it up automatically. The
following project items can be added to the server:

 Tasks/publishers

 Triggers

 Source control blocks

 Labellers

 State managers

Additionally, in CruiseControl.NET it is possible to build server extensions that use
a deeper level of integration. These extensions allow changes to the core
functionality of the server.

The dashboard is mainly customised by either changing the existing templates or
adding new plug-ins. Plug-ins are mainly used to display additional information,
but can also be developed to interact with the server.

This document starts with a high-level overview of the components that make up
CruiseControl.NET and how they interact. While this is not necessary, it does help to
show how everything fits together and how the individual customisations will have
an effect.

The subsequent sections then delve into the different customisations that can be
done. These start with the various project items, move onto server extensions and
finally finish with the dashboard customisations.

Then this document moves with details on some of the common components. These
can be used in many different parts of the system, but are not necessary.

Finally some tips and tricks are covered for developing customisations.

Customising CruiseControl.NET Page 5

VERSIONS

This document is written for CruiseControl.NET 1.5. However many of the
underlying principals are still relevant for version 1.4. Where a feature has changed
or is new, it will be noted.

ABOUT THE AUTHOR

The author, Craig Sutherland, is one of the developers on the CruiseControl.NET
project. He has been involved with the project since 2008 and has contributed several
major enhancements to the codebase (including security, server extensions and
parameters).

Customising CruiseControl.NET Page 6

OVERVIEW

THE BIG PICTURE

CruiseControl.NET does not consist of a single component – instead there are
multiple components that work together to make the entire system. To additionally
complicate things, these components can be on different machines.

At a high-level there are four parts to the system:

Figure 1: High Level Overview

The server and web dashboard both reside on a “server” machine. These are both
automated components that do not require direct user interaction. In contrast the
“client” components, CCTray and CCValidator, are designed to be used directly by a
user.

The server provides the core of CruiseControl.NET. This is the actual workhorse of
the system.

The web dashboard is an ASP.NET application that exposes server information to
the external world. It enables a user to see what is happening on the server and drill
down into the results.

CCTray is a client-side component that allows a user to monitor one or more servers.
It is a WinForms application that has very few extension points. As such it is not
covered in this document.

CCValidator is a tool for checking the validity of a configuration file. As such it is
not directly part of the system, but it is a very useful tool for checking configuration
files. It uses the same underlying binaries as the server, so it will also detect any new
project items. However it does not have any direct extension points, so it will not be
covered in this document either.

THE SERVER

Internally the server consists of a number of parts that work together. At a high level
these parts are:

Customising CruiseControl.NET Page 7

Figure 2: Server Components

The components in orange are directly loaded from configuration – these are
typically the items that can be extended.

The green components are the extra bits and pieces that interface with the external
world. These generally cannot be extended, but they can be used by any extensions.

Natively the server only supports one communications protocol – .NET Remoting.
External clients (e.g. CCTray) appear to connect via HTTP, but this is routed via the
dashboard and not handled natively by the server. In 1.5 or later it is also possible to
add a new communications protocol via a server extension.

Internally the server uses one thread for the application (the server instance), plus
one thread per started project (see below). Additionally, any incoming
communications requests are handled on a new thread.

Each project that runs must be associated with a queue. If the project is not explicitly
associated with a queue, then an implicit queue will be created for the project.

Figure 3: Project-queue interactions

The project has an internal check to see when it should run. When a build is
triggered for a project (see The Project below) the project sends a message to the
queue saying it is ready to start. The queue receives this request, adds it to its
internal store. If there are no requests pending it sends a commence build message to

Customising CruiseControl.NET Page 8

the project. If there is a project already building, then the queue does not send a
message, instead it just leaves the new request in its data store.

When a project finishes building it sends another message to the queue saying it has
finished. The queue removes the request from its data store and checks if there are
any other projects pending. If there are pending projects, it sends a commence build
message to the next project in the queue.

If a project request for the project already exists on the queue, it will ignore the
request.

In 1.5, a security system was added to the server. This works in a slightly different
way from the queues. Security fits in-between the projects and the communications
layer:

Figure 4: Project-security interactions

When a request comes in from a client (via the communications channel), the
security check validates the security credentials. If the credentials are valid, then it
checks if the user has the required permission to perform the action. If so, then the
request is passed onto the project. Otherwise the request is denied.

If the server does not have any security, then both the credential and permission
checks are still made, but they are automatically passed.

THE PROJECT

LOADING

The projects themselves are defined entirely in the configuration. When the server
starts it loads the configuration into memory. This is a two-step process involving
first a pre-processor phase, and then using an external library called NetReflector.

The pre-processor phase converts the XML format into an expanded XML format. As
this cannot be customised, it is not covered in this document.

The NetReflector processor phase converts the XML format into POCO (Plain Old
Class Object) instances. The processor uses attributes within the class definitions to
define how the configuration is converted. Once the configuration has been loaded,
it is then validated – see below for details.

When the project is loaded it is held in memory – but nothing actually happens until
the project is started. When the project is started a new thread is started and the
project triggers are polled every second.

Customising CruiseControl.NET Page 9

BUILD SEQUENCE

At a high level a build (called an integration internally) consists of seven sequential
phases:

Figure 5: Build phases

At the start of every build is a check for any changes. If there are changes, or a force
build has been triggered, the build runs through five phases in sequence: create
label, run prebuild, get source, run tasks and label source. Each of the phases only
occurs if the previous phase was successful, otherwise the sequence is terminated.
The final step of a build, regardless of any errors, is to run the publishers.

In more detail, an actual build is a complex set of interactions between three main
classes:

Customising CruiseControl.NET Page 10

Figure 6: Detailed build sequence

As well as the three main classes, there are a number of external classes that are also
used to perform specific tasks. These classes are:

1. Triggers (ITrigger)
2. Source control block (ISourceControl)
3. Labellers (ILabeller)
4. Task/publishers (ITask)

The ProjectIntegrator holds the thread for the project. It handles starting and
stopping, plus kicks off the actual build. As such it is the starting point for each
build.

Every second the polling thread checks the triggers. It does this by iterating through
all the triggers (external #1) and sees if any of them have been set on. If none of them
are set, then the process is cancelled and it waits for another second.

Once a trigger has been set, it negotiates with the queues to see when it is allowed to
run. This involved both checking that there are no other projects ahead of it in the
queue (if there are it will pause until there are not) and locking any other queues.

Customising CruiseControl.NET Page 11

Once the project is approved to run, it will fire off a build starting event. This is an
extension hook that server extensions can intercept to pause or cancel a build (if
required). Finally it is now ready to hand over to the project for the build.

However, even at this point a “build” has not officially started. The Project
initialises the status (both for the project and the individual items within the project)
and then hands over to the IntegrationRunner for the actual build co-ordination.

The IntegrationRunner then performs the final initialisation for a build (starts the
required status objects, creates folders, etc.) Then it asks the source control block
(external #2) for a list of any modifications that have occurred since the last build.

Once the modifications have been retrieved, the runner checks to see if the
conditions necessary for a build have been met. These are either a trigger has fired a
force build or there are new modifications. If either of these conditions is met, then a
“build” officially starts. Otherwise everything is cancelled (dashed line).

Once the “build” is official, the runner and the project co-ordinate their way through
a series of steps:

1. Create a label (via external #3)
2. Run any pre-build tasks (via external #4)
3. Retrieve the source code (via external #2)
4. Run the build tasks (via external #4)
5. Label the source code (via external #2)
6. Run the publishers (via external #4)

Each of these steps is performed by an external rather than the runner or the project
directly, but both the runner and the project provide the infrastructure around the
externals (logging, error handling etc.)

If an error occurs in steps 1 to 5, the remainder of these steps are cancelled and the
publishers are run directly. The publishers (step 6) will always run once a build is
official – no matter what has happened (unless there is a catastrophe failure that
crashes the entire server!)

Finally, when all the publishers have run, the project updates the status and returns
control to the integrator. This fires an event to let any server extensions know that
the build has finished and returns to the polling cycle.

THE DASHBOARD

THE LIBRARIES

Finally, to round off the big picture, here are the libraries that make up the
CruiseControl.NET system:

Customising CruiseControl.NET Page 12

Figure 7: The libraries of CruiseControl.NET

The base for everything is Remote. This library provides the communications
framework for the various parts to communicate together. It also contains a number
of common interface definitions and the exceptions.

CCTrayLib and CCTray form their own un-related branch. This is functionality that
is specific to the client and has nothing to do with the server code.

On the server side, Core forms the base for both the actual applications (Console and
Service) as well as for the WebDashboard. This provides most of the functionality for
the service, including the pre-defined tasks/publishers, triggers, source control
blocks, etc.

Console is a command-line version of the server that can be run from a console,
while Service is a Windows NT service version. Both of these are shells, they provide
the infrastructure necessary to run as either a command-line or service and all the
actual functionality is handled by Core.

WebDashboard is the ASP.NET application for exposing information via a web
interface. It shares some of the functionality from Core to reduce the amount of
duplication.

Finally CCValidator shares Core so it can access all the definitions for the
configuration. It does not perform any server functionality.

Customising CruiseControl.NET Page 13

PROJECT ITEM BASICS

REQUIRED LIBRARIES

There are three assemblies that are required to build a custom item. These libraries
are:

 NetReflector.dll

 ThoughtWorks.CruiseControl.Core.dll

 ThoughtWorks.CruiseControl.Remote.dll

NetReflector.dll is used for converting from XML to POCO instances. It contains a
number of attributes that are used to mark classes and properties so they can be
read. Basically it is used to define what can be configured.

ThoughtWorks.CruiseControl.Remote.dll provides some base classes and
enumerations. These are typically used by the custom items.

ThoughtWorks.CruiseControl.Core.dll provides the definitions and base classes for
the project items. Additionally it also has a number of utility classes that can be used.

ASSEMBLY NAME

In order for CruiseControl.NET to detect the plug-in the assembly needs to have a
name with a specific format. The format is “ccnet.yourname.plugin.dll”, where
yourname is the name of your plug-in.

For example, all the demos for this document are in an assembly called
“CCNet.CSharpDemos.Plugin.dll”.

This assembly needs to be in the same folder as the server assemblies.

NETREFLECTOR

BASICS

NetReflector is a third party component that is used by CruiseControl.NET to handle
the configuration serialisation. Basically it will convert an XML document into
POCO instances and vice versa. This is what is used to load the configuration.

NetReflector works in a similar way to XML serialisation in .NET by using attributes
to drive the process. However NetReflector uses a form of dynamic discovery to load
the items (in XML serialisation the types need to be hard-coded!) This means the
new items can be added to the configuration without requiring any modifications to
the existing code.

However there is one down side with this approach – each item name must be
unique within CruiseControl.NET. If there are two tasks called “fooTask” then
NetReflector will throw an exception!

CruiseControl.NET uses two of the attributes available from NetReflector –
ReflectorTypeAttribute and ReflectorPropertyAttribute. There are some other
attributes available, but most of them are just duplicates of

Customising CruiseControl.NET Page 14

ReflectorPropertyAttribute and so do not need to be used (the main exception is
ReflectionPreprocessorAttribute but that will be covered later.)

ATTRIBUTE USAGE

The ReflectorTypeAttribute attribute is used to register a type with NetReflector.
This is applied at the class level and has a string parameter – the name of the item.
As noted previously, each name must be unique. Attempting to register the same
name twice, even if it is in a different assembly, will throw an exception.

The ReflectorPropertyAttribute attribute is used to expose a property of a type.
NetReflector will only load properties that have been marked with this attribute – all
other properties will be ignored. Like the ReflectorTypeAttribute attribute it needs
a name – this is the name of the item in the XML.

For example, if we have the following configuration:

<demoTask name="A Demo">

 <author>Craig</author>

 <items>

 <demoTask>

 <name>Inner Demo</name>

 <isNonsense>true</isNonsense>

 </demoTask>

 </items>

</demoTask>

Code 1: Example XML file for NetReflector

We would need to have the following attributes to load it:

[ReflectorType("demoTask")]

public class DemoTask

{

 [ReflectorProperty("name")]

 public string Name { get; set; }

 [ReflectorProperty("author", Required = false)]

 public string Author { get; set; }

 [ReflectorProperty("age", Required = false)]

 public int Age { get; set; }

 [ReflectorProperty("isNonsense", Required = false)]

 public bool IsNonsense { get; set; }

 [ReflectorProperty("items", Required = false)]

 public DemoTask[] InnerItems { get; set; }

}

Code 2: Class to load example configuration

NetReflector can handle a wide variety of types – value types (including
enumerations), classes, arrays, lists, etc. NetReflector does not care whether value
types and strings are stored as attributes or elements. However all other types must
be stored as elements.

In the example, the name is stored as an attribute on the root element, but an
element below – either is perfectly valid as NetReflector does not care. We also see
that it handle both strings, integers and boolean values.

Customising CruiseControl.NET Page 15

The example also has an array of items. When NetReflector attempts to load the
configuration it will generate an internal array of values. It does this by looking up
the element name (e.g. demoTask in the example) and then generates an instance of
that class. This means if we were to derive another class from demoTask (say
betterDemoTask), NetReflector would know how to load it.

CONFIGURATION OPTIONS

As well as the name, the property attributes have a few other properties that can set.
The most common property is the Required property. By default all reflected
properties are required – if the configuration does not have it an exception will be
thrown. Adding a Required = false property to the attribute makes the element
optional.

The other properties available that influence loading are InstanceType and
InstanceTypeKey. InstanceType is used for setting a default type on a singleton
value. This would be used for the following type of configuration:

<demoTask name="A Demo">

 <author>Craig</author>

 <child name="Child Demo">

 <age>11</age>

 </child>

</demoTask>

Code 3: InstanceType XML example

InstanceTypeKey is also used for singleton values, but where the type can be
configured by the user. For example:

<demoTask name="Demo #3">

 <author>Craig</author>

 <typedChild name="Child Demo" type="demoTask">

 <age>11</age>

 </typedChild>

</demoTask>

Code 4: InstanceTypeKey XML example

PRE-PROCESSING

The other attribute that is sometimes used is ReflectionPreprocessorAttribute.
This is used to allow a class to pre-process the XML before NetReflector tries to load
it. This can only be placed on a method with the following signature:

XmlNode PreprocessParameters(NetReflectorTypeTable typeTable, XmlNode

inputNode)

Code 5: Pre-processor signature

When NetReflector tries to load a class it will first check if there is a method with this
signature. If there is it will call the method and pass in the node that it is trying to
parse. In return it expects another node in return that contains the node that it will
then parse.

This is typically used in situations where the XML needs to be transformed from one
form to another. The most common scenario is when using parameter values – these

Customising CruiseControl.NET Page 16

have a non-XML syntax, so CruiseControl.NET needs to transform them into a
syntax the parser can understand.

For example we could allow the user to enter a date of birth and pre-process it into
an age. Giving the following XML:

<demoTask name="A Demo">

 <author>Craig</author>

 <dob>18-Jul-1982</dob>

</demoTask>

Code 6: Example XML with a date of birth

 We could convert it into:

<demoTask name="A Demo">

 <author>Craig</author>

 <age>28</age>

</demoTask>

Code 7: Converted example XML

With the following pre-processor:

[ReflectionPreprocessor]

public XmlNode PreprocessParameters(NetReflectorTypeTable typeTable,

XmlNode inputNode)

{

 var dobNode = (from node in inputNode.ChildNodes

 .OfType<XmlNode>()

 where node.Name == "dob"

 select node).SingleOrDefault();

 if (dobNode != null)

 {

 var dob = DateTime.Parse(dobNode.InnerText);

 inputNode.RemoveChild(dobNode);

 var ageNode = inputNode.OwnerDocument.CreateElement("age");

 ageNode.InnerText = Convert.ToInt32(

 (DateTime.Now - dob).TotalDays / 365)

 .ToString();

 inputNode.AppendChild(ageNode);

 }

 return inputNode;

}

Code 8: Pre-processor method to convert DOB to age

Of course this is a very simple example, but it shows the basic principal. The pre-
processing can be as simple or as complex as desired.

Note: the LINQ statement in the above example is used to get around any issues
with namespaces. The SelectNodes() and SelectSingleNode() methods have issues
when namespaces are used.

Customising CruiseControl.NET Page 17

TASKS/PUBLISHERS

OVERVIEW

Tasks are the basic unit of work within CruiseControl.NET. They perform most of
the actions required to produce a build.

At its most simple a task does only one thing – it executes something. However a
task can be expanded to provide additional interactions with the system – these are
covered below.

HISTORICAL NOTE

As an aside, originally in CruiseControl.NET tasks and publishers were two
completely separate concepts (and interfaces). Over time it was realised that they are
actually the same thing and have been merged into one.

However some tasks are still classified as “publishers”. This is more a conceptual
classification rather than a physical one – they can still be run in any of the task
blocks (prebuild, tasks or publishers.) However some publishers require the XML
log that is produced by xmlLogger and can have unpredictable outside of the
publishers block.

THE BASICS

The simplest task is built by implementing the ITask interface. This interface has the
following definition:
public interface ITask

{

 void Run(IIntegrationResult result);

}

Code 9: ITask Definition

This interface provides a single method – Run(). This takes in an
IIntegrationResult; this is used to pass information into the task and to return
results (see Getting Information and Returning Results below). As a bare minimum
the task needs to return a result code – whether it was successful or not.

A simple HelloWorldTask would be:

namespace Customisations.Demos

{

 using System;

 using ThoughtWorks.CruiseControl.Core;

 using ThoughtWorks.CruiseControl.Remote;

 public class HelloWorldTask

 : ITask

 {

 public void Run(IIntegrationResult result)

 {

 Console.WriteLine("Hello");

 result.Status = IntegrationStatus.Success;

 }

 }

}

Customising CruiseControl.NET Page 18

Code 10: Basic HelloWorldTask

At this point, while the task will run, it won’t be detected by the configuration
reader. To do this a reflector attribute needs to be added:

namespace CCNet.CSharpDemos.Plugin

{

 using System;

 using Exortech.NetReflector;

 using ThoughtWorks.CruiseControl.Core;

 using ThoughtWorks.CruiseControl.Remote;

 [ReflectorType("helloWorld")]

 public class HelloWorldTask

 : ITask

 {

 public void Run(IIntegrationResult result)

 {

 Console.WriteLine("Hello");

 result.Status = IntegrationStatus.Success;

 }

 }

}

Code 11: HelloWorldTask with reflection

This defines a task called helloWorld. When the task runs it will display “Hello” in
the console.

This can then be configured in a project:

<cruisecontrol xmlns="http://thoughtworks.org/ccnet/1/5">

 <project name="DemoTest">

 <tasks>

 <helloWorld/>

 </tasks>

 </project>

</cruisecontrol>

Code 12: Example configuration for the HelloWorldTask

This can then be run and tested – although not much will be seen (unless the console
window is open – then you will see the message).

Note: Each reflector name must be unique – if there are any duplicate names
NetReflector will throw an exception!

GETTING INFORMATION

Information from the current build is passed in via the IIntegrationResult. This
provides some basic details on the project, plus information about the build. The
section on IIntegrationResult: Integration Results in Common Components contains
the full details on this class, but this section will cover some of the more useful
properties.

Probably the most commonly used property is the Status. This contains the current
status of the build – it can be used to detect what state the build is in. Valid values
are:

 Success – everything has run successfully prior to the task

Customising CruiseControl.NET Page 19

 Failure – a previous task has failed

 Exception – there has been an unhandled exception in the build

 Unknown – the status has not been set yet (typically this will be the status for
the first task in a build)

 Cancelled – the task has been cancelled

The result also contains the following information on a project:

 Name

 Working folder

 Artefact folder

 Project URL (when set)

And the following information on the build:

 Any parameters

 The build condition (IfModificationExists or ForceBuild)

 The label

 Start/end times

 Any modifications

 Any current results

Plus some details on the last build:

 Status

 Label

 Last run date/time

For example, we can modify our HelloWorldTask to contain the project name and
when the build started:

namespace CCNet.CSharpDemos.Plugin

{

 using System;

 using Exortech.NetReflector;

 using ThoughtWorks.CruiseControl.Core;

 using ThoughtWorks.CruiseControl.Remote;

 [ReflectorType("helloWorld")]

 public class HelloWorldTask

 : ITask

 {

 public void Run(IIntegrationResult result)

 {

 Console.WriteLine("Hello from " + result.ProjectName +

 "(build started " + result.StartTime.ToString() + ")");

 result.Status = IntegrationStatus.Success;

 }

 }

}

Code 13: HelloWorldTask using result information

Again this can be tested, although not much happens still. The next task is to add
some results that will be added to the log.

Customising CruiseControl.NET Page 20

RETURNING RESULTS

To pass results back to the build the result is again used. We have already seen how
the Status can be used to set the outcome of the task. It is also possible to add
information to the log file using the result.

To do this there is a method on IIntegrationResult called AddTaskResult(). This
method has two overrides – one that accepts a plain string and the other that accepts
an ITaskResult (see Advanced Results below).

To add a string to the results is as simple as calling AddTaskResult with the string.
For example, instead of writing to the console we can write to the log instead:

namespace CCNet.CSharpDemos.Plugin

{

 using Exortech.NetReflector;

 using ThoughtWorks.CruiseControl.Core;

 using ThoughtWorks.CruiseControl.Remote;

 [ReflectorType("helloWorld")]

 public class HelloWorldTask

 : ITask

 {

 public void Run(IIntegrationResult result)

 {

 result.AddTaskResult("Hello from " + result.ProjectName +

 "(build started " + result.StartTime.ToString() + ")");

 result.Status = IntegrationStatus.Success;

 }

 }

}

Code 14: Adding to the result log from HelloWorldTask

Again, running this does not do much, but if you open the log file you will see the
message in the log.

Adding an external file to the log is a similar process, but using an ITaskResult
instead. For example, to add a file:

result.AddTaskResult(new FileTaskResult(fileName));

Code 15: Adding a file result

See Advanced Results below for further details on adding files.

PASSING CONFIGURATION OPTIONS

The next step is to add some configuration options to the task. This is done by
adding some properties and marking them with reflector attributes.

The following code shows how to add a person’s name to the task:

namespace CCNet.CSharpDemos.Plugin

{

 using Exortech.NetReflector;

 using ThoughtWorks.CruiseControl.Core;

 using ThoughtWorks.CruiseControl.Remote;

 [ReflectorType("helloWorld")]

 public class HelloWorldTask

Customising CruiseControl.NET Page 21

 : ITask

 {

 [ReflectorProperty("name")]

 public string PersonsName { get; set; }

 public void Run(IIntegrationResult result)

 {

 result.AddTaskResult("Hello " + this.PersonsName +

 " from " + result.ProjectName +

 "(build started " + result.StartTime.ToString() + ")");

 result.Status = IntegrationStatus.Success;

 }

 }

}

Code 16: Adding a configuration property

This will add a property called name to the configuration. If we try to run this new
task without changing the configuration we will get an error:

Unable to instantiate CruiseControl projects from

configuration document.

Configuration document is likely missing Xml nodes required

for properly populating CruiseControl configuration.

Missing Xml node (name) for required member

(CCNet.CSharpDemos.Plugin.HelloWorldTask.PersonsName).

Xml: <helloWorld xmlns="http://thoughtworks.org/ccnet/1/5" />

 Conflicting project data : <project name="DemoTest"

xmlns="http://thoughtworks.org/ccnet/1/5"><tasks><helloWorld

/></tasks></project>

This is because by default properties are added as required. When the configuration
is loaded it will attempt to validate the configuration to ensure that all required
information is set.

So if we modify our configuration to the following it will now work:

<cruisecontrol xmlns="http://thoughtworks.org/ccnet/1/5">

 <project name="DemoTest">

 <tasks>

 <helloWorld name="John Doe"/>

 </tasks>

 </project>

</cruisecontrol>

Code 17: Configuration with property

So what if we want to add an optional parameter to the task? This is done by setting
the required property on the attribute. For example if we added a repeat property to
the HelloWorldTask:

namespace CCNet.CSharpDemos.Plugin

{

 using Exortech.NetReflector;

 using ThoughtWorks.CruiseControl.Core;

 using ThoughtWorks.CruiseControl.Remote;

 [ReflectorType("helloWorld")]

 public class HelloWorldTask

 : ITask

 {

Customising CruiseControl.NET Page 22

 public HelloWorldTask()

 {

 this.RepeatCount = 1;

 }

 [ReflectorProperty("name")]

 public string PersonsName { get; set; }

 [ReflectorProperty("count", Required = false)]

 public int RepeatCount { get; set; }

 public void Run(IIntegrationResult result)

 {

 for (var loop = 0; loop < this.RepeatCount; loop++)

 {

 result.AddTaskResult("Hello " + this.PersonsName +

 " from " + result.ProjectName +

 "(build started " + result.StartTime.ToString() + ")");

 }

 result.Status = IntegrationStatus.Success;

 }

 }

}

Code 18: An optional configuration property

Since this is an optional property a constructor has also been added to set the default
value.

Attempting to run this task without changing the configuration will still work.
Setting the property will then cause the greeting to be repeated multiple times.

BUILD PROGRESS INFORMATION

As well as the log information it is also helpful to return a status message when the
task is running. This shows the user that something is actually happening within the
build.

Build progress information is sent to the server from the task via the
BuildProgressInformation property on IIntegrationResult. Typically when a task
starts it will signal that it has started. The following example shows how this is done:

namespace CCNet.CSharpDemos.Plugin

{

 using Exortech.NetReflector;

 using ThoughtWorks.CruiseControl.Core;

 using ThoughtWorks.CruiseControl.Remote;

 [ReflectorType("helloWorld")]

 public class HelloWorldTask

 : ITask

 {

 public HelloWorldTask()

 {

 this.RepeatCount = 1;

 }

 [ReflectorProperty("name")]

 public string PersonsName { get; private set; }

Customising CruiseControl.NET Page 23

 [ReflectorProperty("count", Required = false)]

 public int RepeatCount { get; set; }

 public void Run(IIntegrationResult result)

 {

 result.BuildProgressInformation

 .SignalStartRunTask("Sending a hello world greeting");

 for (var loop = 0; loop < this.RepeatCount; loop++)

 {

 result.AddTaskResult("Hello " + this.PersonsName +

 " from " + result.ProjectName +

 "(build started " + result.StartTime.ToString() + ")");

 }

 result.Status = IntegrationStatus.Success;

 }

 }

}

Code 19: Sending a build progress report

This call passes the message into the build status – when a client queries the server
these messages are included in the status details.

ADDITIONAL INTERFACES

As well as the basic ITask there are some additional interfaces that can be used to
extend the functionality of the task. These are all covered in Common Components
below, but this section will cover how they apply to tasks.

For tasks that require validation beyond required/optional it is possible to use the
IConfigurationValidation interface. This will be triggered after the configuration is
loaded. Any validation issues can either be flagged as a warning (the build will still
run) or as an error (the build will not run.)

For example, if we wanted to modify HelloWorldTask to display a warning if the
count is zero or less we could do the following:

namespace CCNet.CSharpDemos.Plugin

{

 using Exortech.NetReflector;

 using ThoughtWorks.CruiseControl.Core;

 using ThoughtWorks.CruiseControl.Core.Config;

 using ThoughtWorks.CruiseControl.Remote;

 [ReflectorType("helloWorld")]

 public class HelloWorldTask

 : ITask, IConfigurationValidation

 {

 public HelloWorldTask()

 {

 this.RepeatCount = 1;

 }

 [ReflectorProperty("name")]

 public string PersonsName { get; private set; }

 [ReflectorProperty("count", Required = false)]

 public int RepeatCount { get; set; }

Customising CruiseControl.NET Page 24

 public void Run(IIntegrationResult result)

 {

 result.BuildProgressInformation

 .SignalStartRunTask("Sending a hello world greeting");

 for (var loop = 0; loop < this.RepeatCount; loop++)

 {

 result.AddTaskResult("Hello " + this.PersonsName +

 " from " + result.ProjectName +

 "(build started " + result.StartTime.ToString() + ")");

 }

 result.Status = IntegrationStatus.Success;

 }

 public void Validate(IConfiguration configuration,

ConfigurationTrace parent, IConfigurationErrorProcesser errorProcesser)

 {

 if (this.RepeatCount <= 0)

 {

 errorProcesser.ProcessWarning("count is less than 1!");

 }

 }

 }

}

Code 20: Adding validation to HelloWorldTask

This will display the following warning message:

[CCNet Server:WARN] count is less than 1!

As you can see only the message gets displayed - so making the warning as precise
as possible is very helpful!

The IStatusSnapshotGenerator allows a task to generate any status report. This is
used in the dashboard and CCTray to show the internal workings of a project. In 1.5
a new interface has been added called IParamatisedItem. This allows a task to apply
any parameter values.

These last two interfaces provide some very common functionality, so in 1.5 some
new classes were added to simplify using these interfaces.

BASE CLASSES

In the 1.5 release some new abstract classes were added to simplify the development
of tasks. These abstract classes provide the common functionality that is used in
different tasks. These classes are shown in Figure 8:

Customising CruiseControl.NET Page 25

Figure 8: Abstract task classes

TaskBase implements the functionality required for IParamatisedItem and
IStatusSnapshotGenerator. New tasks can now get this functionality without
needing to re-code it every time. It also added a Description property to be used in
the task reporting.

BaseExecutableTask provides the infrastructure for executing external applications
from within CruiseControl.NET. This includes error monitoring and handling time-
outs, stopping tasks mid-run, etc.

TaskContainerBase provides functionality for tasks that contain other tasks as sub-
tasks. This is mainly an extension of the functionality in TaskBase so it can handle
the sub-tasks as well.

These abstract classes all provide a default implementation of Run(). Any derived
classes need to override the Execute() method instead. This method is very similar
to the Run() method, but it returns a bool value. This value is then used to set
whether the task was successful or not.

So, the HelloWorldTask can be rewritten to use these base classes:

namespace CCNet.CSharpDemos.Plugin

{

 using Exortech.NetReflector;

 using ThoughtWorks.CruiseControl.Core;

 using ThoughtWorks.CruiseControl.Core.Config;

 using ThoughtWorks.CruiseControl.Core.Tasks;

 using ThoughtWorks.CruiseControl.Remote;

 [ReflectorType("helloWorld2")]

 public class HelloWorldTask2

 : TaskBase, IConfigurationValidation

 {

 public HelloWorldTask2()

 {

 this.RepeatCount = 1;

 }

 [ReflectorProperty("name")]

 public string PersonsName { get; private set; }

Customising CruiseControl.NET Page 26

 [ReflectorProperty("count", Required = false)]

 public int RepeatCount { get; set; }

 protected override bool Execute(IIntegrationResult result)

 {

 result.BuildProgressInformation

 .SignalStartRunTask("Sending a hello world greeting");

 for (var loop = 0; loop < this.RepeatCount; loop++)

 {

 result.AddTaskResult("Hello " + this.PersonsName +

 " from " + result.ProjectName +

 "(build started " + result.StartTime.ToString() + ")");

 }

 return true;

 }

 public void Validate(IConfiguration configuration,

ConfigurationTrace parent, IConfigurationErrorProcesser errorProcesser)

 {

 if (this.RepeatCount <= 0)

 {

 errorProcesser.ProcessWarning("count is less than 1!");

 }

 }

 }

}

Code 21: HelloWorldTask from TaskBase

This still has all the old functionality, but it now reports its status and can use
parameters.

ADVANCED RESULTS

In the above demos we looked at two versions of AddTaskResult(). One took a
string as the parameter, while the other used a FileTaskResult instance. Why is this
of importance?

Internally the string version converts generates a new DataTaskResult instance and
stores the string. This then gets stored for writing to the log. So internally the log
results are all stored as ITaskResult instances. This provides an additional extension
point for storing and writing results.

Out of the box, CruiseControl.NET comes with four implementations of
ITaskResult:

 DataTaskResult – this is the most basic implementation, it simply stores a
string to write to the log.

 FileTaskResult – stores a reference to a file to import into the log. When the
log is written the contents of the file are loaded into memory, converted into
XML and then written to the log.

 ProcessTaskResult – holds the results of an external application call. This is
typically the standard error and output strings, plus the result code. These are
concatenated and written to the log on saving.

Customising CruiseControl.NET Page 27

 XmlTaskResult – used for building up an XML document in memory and then
writes it to the log on saving (added in 1.5).

These can all be instantiated directly and then stored as a result for the log. However
it is also possible to write new implementations.

The definition of ITaskResult is very simple:

public interface ITaskResult

{

 string Data { get; }

 bool CheckIfSuccess();

}

Code 22: ITaskResult definition

The Data property is called when the log is being written. This just returns a string,
in any format! As the log is XML the log writer will automatically ensure that the
data is a valid XML string (it will enclose it in a CDATA block if the string is not
XML.)

The CheckIfSuccess() method is a short-cut path for setting the Status of
IIntegrationResult. If this method returns true, then will be set to Success,
otherwise it will be set to Failure.

For example, we can build a custom ITaskResult for our HelloWorldTask. Rather
than storing the entire string, we might just want to store the important details:

namespace CCNet.CSharpDemos.Plugin

{

 using ThoughtWorks.CruiseControl.Core;

 public class HelloWorldTaskResult

 : ITaskResult

 {

 private readonly string personName;

 private readonly IIntegrationResult result;

 public HelloWorldTaskResult(string personName, IIntegrationResult

result)

 {

 this.personName = personName;

 this.result = result;

 }

 public string Data

 {

 get

 {

 return "Hello " + this.personName +

 " from " + this.result.ProjectName +

 "(build started " + this.result.StartTime.ToString() +

")";

 }

 }

 public bool CheckIfSuccess()

 {

 return true;

 }

Customising CruiseControl.NET Page 28

 }

}

Code 23: Custom ITaskResult for HelloWorldTask

This simply stores the person’s name and the result details. When the log is written
it will generate the greeting and return it, exactly the same as the old version.

Then the task needs to be changed to use the new implementation:

namespace CCNet.CSharpDemos.Plugin

{

 using Exortech.NetReflector;

 using ThoughtWorks.CruiseControl.Core;

 using ThoughtWorks.CruiseControl.Core.Config;

 using ThoughtWorks.CruiseControl.Core.Tasks;

 using ThoughtWorks.CruiseControl.Remote;

 [ReflectorType("helloWorld2")]

 public class HelloWorldTask2

 : TaskBase, IConfigurationValidation

 {

 public HelloWorldTask2()

 {

 this.RepeatCount = 1;

 }

 [ReflectorProperty("name")]

 public string PersonsName { get; private set; }

 [ReflectorProperty("count", Required = false)]

 public int RepeatCount { get; set; }

 protected override bool Execute(IIntegrationResult result)

 {

 result.BuildProgressInformation

 .SignalStartRunTask("Sending a hello world greeting");

 for (var loop = 0; loop < this.RepeatCount; loop++)

 {

 result.AddTaskResult(

 new HelloWorldTaskResult(this.PersonsName, result));

 }

 return true;

 }

 public void Validate(IConfiguration configuration,

ConfigurationTrace parent, IConfigurationErrorProcesser errorProcesser)

 {

 if (this.RepeatCount <= 0)

 {

 errorProcesser.ProcessWarning("count is less than 1!");

 }

 }

 }

}

Code 24: Using the custom ITaskResult

Of course this is a very contrived example, but it does show how easy it is to add a
new type of result (perhaps encrypted or compressed in memory – the possibilities
are endless!)

Customising CruiseControl.NET Page 29

EXECUTING EXTERNAL APPLICATIONS

One common pattern in CruiseControl.NET is a task that calls an external
application. This pattern is so common that in 1.4 the BaseExecutableTask abstract
task was added. The class was changed slightly in 1.5 to inherit from, but it still
works in the same way (the Execute() method needs to be implemented instead of
the Run() method.)

If HelloWorld is an external application, we could use this abstract task to build the
following class:

namespace CCNet.CSharpDemos.Plugin

{

 using System.Diagnostics;

 using Exortech.NetReflector;

 using ThoughtWorks.CruiseControl.Core;

 using ThoughtWorks.CruiseControl.Core.Tasks;

 [ReflectorType("callHelloWorld")]

 public class CallHelloWorldTask

 : BaseExecutableTask

 {

 [ReflectorProperty("name")]

 public string PersonsName { get; private set; }

 [ReflectorProperty("executable")]

 public string Executable { get; private set; }

 protected override string GetProcessFilename()

 {

 return string.IsNullOrEmpty(this.Executable) ?

 "HelloWorldApp" :

 this.Executable;

 }

 protected override string GetProcessArguments(IIntegrationResult

result)

 {

 return "\"" + this.PersonsName + "\"";

 }

 protected override string

GetProcessBaseDirectory(IIntegrationResult result)

 {

 return result.WorkingDirectory;

 }

 protected override ProcessPriorityClass GetProcessPriorityClass()

 {

 return ProcessPriorityClass.Normal;

 }

 protected override int GetProcessTimeout()

 {

 return 300;

 }

 protected override bool Execute(IIntegrationResult result)

 {

Customising CruiseControl.NET Page 30

 var processResult = this.TryToRun(

 this.CreateProcessInfo(result),

 result);

 result.AddTaskResult(new ProcessTaskResult(processResult));

 return !processResult.Failed;

 }

 }

}

Code 25: Deriving from BaseExecutableTask

The two public properties are not strictly needed – they just provide configurable
options for the task. However all the protected methods are required.

GetProcessFilename() sets the name of the application to execute. Since this is a
configurable property we also want to set a default – otherwise when the task tries to
run it will throw an exception. Also note the missing extension – it is generally good
practise to omit the extension on the default. This is to allow cross platform
compatibility with Mono-based installs.

GetProcessArguments() allows the task to build the list of arguments to pass into the
application. This method just returns a string.

GetProcessBaseDirectory() sets the working directory for the application. If the
process filename is a relative path then the path is relative to this directory.

GetProcessPriorityClass() and GetProcessTimeout() provide some additional
settings for the execution.

Finally there is the standard Execute() (or Run()) method. Internally this method
calls this.TryToRun(this.CreateProcessInfo(result), result). This call builds up
the process information (defines the application to call, its arguments, etc.) and then
calls it. A ProcessResult is returned containing the results of the call.

This is a very minimal example, it is also possible to do additional processing, e.g.
import external result files, pre-/post-process data, etc.

Customising CruiseControl.NET Page 31

TRIGGERS

OVERVIEW

A trigger is a special type of task that can start a build. It does not run inside the
normal build process, instead it is called by the project integrator directly. This
means it does not have access to any of the information that a normal task has.

A trigger simply checks to see if its condition is fulfilled and then returns either a
request to start a build or null. The project integrator is responsible for checking the
outcome and then scheduling a build.

If a request is returned, then a build is started. This must be an instance of
IntegrationRequest. If null is returned, then nothing will happen.

THE BASICS

A trigger implements the ITrigger interface. This interface has the following
definition:

public interface ITrigger

{

 IntegrationRequest Fire();

 DateTime NextBuild { get; }

 void IntegrationCompleted();

}

Code 26: ITrigger definition

The Fire() method is called by the poll loop. This means that it will be called
approximately once every second when the project is pending a build, and not called
at all when a build is running. If a trigger takes a long time to run then it will slow
down all other triggers for a project!

The NextBuild property is for informational purposes. It is used for generating the
project status report. When a report is requested each trigger is queried to see when
it next expects to either trigger a build, or to check whether a build should be
triggered. If there is no next time, then this property should return
DateTime.MaxValue.

Note: triggering a build does not necessarily mean a build will run. If the trigger
condition is IfModificationExists, then this will initiate a source control check.
Only if this check detects changes, or the condition is ForceBuild, will an actual
build start.

Finally the IntegrationCompleted() method is a way for the trigger to get feedback
on when a build has completed. This can be useful for resetting the trigger after a
build has completed.

BASIC EXAMPLE

For an example, we will build a trigger that triggers a build when a file changes.

To start with, this trigger must implement the ITrigger interface:

namespace CCNet.CSharpDemos.Plugin

Customising CruiseControl.NET Page 32

{

 using System;

 using System.IO;

 using Exortech.NetReflector;

 using ThoughtWorks.CruiseControl.Remote;

 [ReflectorType("fileChangedTrigger")]

 public class FileChangedTrigger

 : ITrigger

 {

 private DateTime? lastChanged;

 public DateTime NextBuild

 {

 get { return DateTime.MaxValue; }

 }

 public void IntegrationCompleted()

 {

 }

 public IntegrationRequest Fire()

 {

 IntegrationRequest request = null;

 var changeTime = File.GetLastWriteTime(@"C:\monitor.txt");

 if (this.lastChanged.HasValue)

 {

 if (changeTime > this.lastChanged.Value)

 {

 request = new IntegrationRequest(

 BuildCondition.ForceBuild,

 this.GetType().Name,

 null);

 this.lastChanged = changeTime;

 }

 }

 else

 {

 this.lastChanged = changeTime;

 }

 return request;

 }

 }

}

Code 27: Basic FileChangedTrigger

This trigger has a private field to store the date the file was last changed. The first
time the trigger is checked it will store the date/time the file was last changed. On
subsequent checks this field is checked against the file date/time to see if anything
has changed.

If the date/time has changed then a new IntegrationRequest instance is started.
This instance contains the condition, the name of the trigger and the name of the
user who triggered the changed.

Customising CruiseControl.NET Page 33

By convention the trigger name defaults to the class name of the actual trigger, but a
trigger can change this if desired. The user name defaults to null for automatic
triggers – this is normally set when a build is forced by a client.

This implementation returns DateTime.MaxValue for the NextBuild property. Since
we don’t know when the file will change, we just tell the system we don’t know.

And that’s all there is to a basic trigger. The condition for a build can be any check
desired – the only requirement is the trigger returns an IntegrationRequest when a
build is to be triggered.

To configure this trigger in a project is a simple matter of adding the trigger to the
triggers block of a project. Using our last example we can configure the project like
this:

<cruisecontrol xmlns="http://thoughtworks.org/ccnet/1/5">

 <project name="DemoTest">

 <triggers>

 <fileChangedTrigger/>

 </triggers>

 <tasks>

 <helloWorld name="John Doe"/>

 </tasks>

 </project>

</cruisecontrol>

Code 28: Project configuration with the fileChangedTrigger

This will monitor a file called monitor.txt in C:\. When this file is changed a build
will be triggered.

PASSING CONFIGURATION OPTIONS

This trigger is very inflexible – it does not allow for the user to choose which file to
monitor or the type of build condition. Like a task this information can be exposed to
the user by adding some reflected properties:

namespace CCNet.CSharpDemos.Plugin

{

 using System;

 using System.IO;

 using Exortech.NetReflector;

 using ThoughtWorks.CruiseControl.Remote;

 [ReflectorType("fileChangedTrigger")]

 public class FileChangedTrigger

 : ITrigger

 {

 private DateTime? lastChanged;

 public FileChangedTrigger()

 {

 this.BuildCondition = BuildCondition.IfModificationExists;

 }

 [ReflectorProperty("file")]

 public string MonitorFile { get; set; }

 [ReflectorProperty("buildCondition", Required = false)]

Customising CruiseControl.NET Page 34

 public BuildCondition BuildCondition { get; set; }

 public DateTime NextBuild

 {

 get { return DateTime.MaxValue; }

 }

 public void IntegrationCompleted()

 {

 }

 public IntegrationRequest Fire()

 {

 IntegrationRequest request = null;

 var changeTime = File.GetLastWriteTime(this.MonitorFile);

 if (this.lastChanged.HasValue)

 {

 if (changeTime > this.lastChanged.Value)

 {

 request = new IntegrationRequest(

 this.BuildCondition,

 this.GetType().Name,

 null);

 this.lastChanged = changeTime;

 }

 }

 else

 {

 this.lastChanged = changeTime;

 }

 return request;

 }

 }

}

Code 29: FileChangedTrigger with configurable properties

This adds two properties – an optional property called BuildCondition and a
required property called MonitorFile. If the user does not set the MonitorFile, then
the configuration will not load – making it easy to validate that a value has at least
been set.

The other changes are in the Fire() method – it now checks the specified file instead
of the hard-coded path, and then returns the specified build condition. A constructor
was also added to set the default value for the condition.

Note: NetReflector does not know how to handle nullable types. Therefore it is not
possible to use a nullable type, with a get default value check.

After changing the configuration, it is now possible to monitor any file.

POST BUILD PROCESSING

This will happily check the file and then trigger a build whenever the file has been
changed since the last check. But what happens if the file is changed during the
build? During the build this trigger is not checked, but since the date/time has not
been changed, the first check after a build will fire the trigger again!

Customising CruiseControl.NET Page 35

As you can imagine this could lead to an endless sets of trigger-build-trigger cycles.
Not a very good scenario. The way to handle this is to update the date after a build
has run:

namespace CCNet.CSharpDemos.Plugin

{

 using System;

 using System.IO;

 using Exortech.NetReflector;

 using ThoughtWorks.CruiseControl.Remote;

 [ReflectorType("fileChangedTrigger")]

 public class FileChangedTrigger

 : ITrigger

 {

 private DateTime? lastChanged;

 public FileChangedTrigger()

 {

 this.BuildCondition = BuildCondition.IfModificationExists;

 }

 [ReflectorProperty("file")]

 public string MonitorFile { get; set; }

 [ReflectorProperty("buildCondition", Required = false)]

 public BuildCondition BuildCondition { get; set; }

 public DateTime NextBuild

 {

 get { return DateTime.MaxValue; }

 }

 public void IntegrationCompleted()

 {

 this.lastChanged = File.GetLastWriteTime(this.MonitorFile);

 }

 public IntegrationRequest Fire()

 {

 IntegrationRequest request = null;

 var changeTime = File.GetLastWriteTime(this.MonitorFile);

 if (this.lastChanged.HasValue)

 {

 if (changeTime > this.lastChanged.Value)

 {

 request = new IntegrationRequest(

 this.BuildCondition,

 this.GetType().Name,

 null);

 this.lastChanged = changeTime;

 }

 }

 else

 {

 this.lastChanged = changeTime;

 }

 return request;

 }

Customising CruiseControl.NET Page 36

 }

}

Code 30: Post-build processing

This example updated the private field to record the date/time after the build has
completed. Otherwise this check will work the same as the previous example.

VALIDATING THE CONFIGURATION

Like a task it is possible to add internal validation to a trigger. This uses the same
IConfigurationValidation interface.

In our trigger so far, the file to monitor must be set, but it could be set to an empty
string, or it could be set to monitor a file that does not exist. We can modify our
trigger to check these conditions in the validation phase:

namespace CCNet.CSharpDemos.Plugin

{

 using System;

 using System.IO;

 using Exortech.NetReflector;

 using ThoughtWorks.CruiseControl.Core;

 using ThoughtWorks.CruiseControl.Core.Config;

 using ThoughtWorks.CruiseControl.Remote;

 [ReflectorType("fileChangedTrigger")]

 public class FileChangedTrigger

 : ITrigger, IConfigurationValidation

 {

 private DateTime? lastChanged;

 public FileChangedTrigger()

 {

 this.BuildCondition = BuildCondition.IfModificationExists;

 }

 [ReflectorProperty("file")]

 public string MonitorFile { get; set; }

 [ReflectorProperty("buildCondition", Required = false)]

 public BuildCondition BuildCondition { get; set; }

 public DateTime NextBuild

 {

 get { return DateTime.MaxValue; }

 }

 public void IntegrationCompleted()

 {

 this.lastChanged = File.GetLastWriteTime(this.MonitorFile);

 }

 public IntegrationRequest Fire()

 {

 IntegrationRequest request = null;

 var changeTime = File.GetLastWriteTime(this.MonitorFile);

 if (this.lastChanged.HasValue)

 {

 if (changeTime > this.lastChanged.Value)

Customising CruiseControl.NET Page 37

 {

 request = new IntegrationRequest(

 this.BuildCondition,

 this.GetType().Name,

 null);

 this.lastChanged = changeTime;

 }

 }

 else

 {

 this.lastChanged = changeTime;

 }

 return request;

 }

 public void Validate(IConfiguration configuration,

 ConfigurationTrace parent,

 IConfigurationErrorProcesser errorProcesser)

 {

 if (string.IsNullOrEmpty(this.MonitorFile))

 {

 errorProcesser.ProcessError("File cannot be empty");

 }

 else if (!File.Exists(this.MonitorFile))

 {

 errorProcesser.ProcessWarning(

 "File '" + this.MonitorFile + "' does not exist");

 }

 }

 }

}

Code 31: Internal validation for a trigger

This example adds the IConfigurationValidation interface and implements the
method. Since there must be a file, this will file the validation if it is not set. However
since the file could be generated during the build (or by another project, etc.) the file
missing check just returns a warning.

NESTED TRIGGERS

While this approach works fine for a file on a local disk, for a file on the network it
would mean there is network traffic every second. If the network is slow, it might
take several seconds to check the file. It would be nice to give the user the option of
how often to check the file.

Now we could add a second property to our trigger saying how often to check a
trigger and this is a valid approach. But there is a common pattern in building
triggers where a trigger can have an inner trigger. The trigger is only checked if the
inner trigger has already fired.

This pattern also gives the user the choice of which inner trigger to use – what if they
only wanted to check the file once a day at a set time? Or if they wanted to wait for a
project to finish before performing the check? With this approach the user chooses
the trigger and we do not need to change our trigger at all!

Here is how we would add an inner trigger to our trigger:

Customising CruiseControl.NET Page 38

namespace CCNet.CSharpDemos.Plugin

{

 using System;

 using System.IO;

 using Exortech.NetReflector;

 using ThoughtWorks.CruiseControl.Core;

 using ThoughtWorks.CruiseControl.Core.Config;

 using ThoughtWorks.CruiseControl.Core.Triggers;

 using ThoughtWorks.CruiseControl.Remote;

 [ReflectorType("fileChangedTrigger")]

 public class FileChangedTrigger

 : ITrigger, IConfigurationValidation

 {

 private DateTime? lastChanged;

 public FileChangedTrigger()

 {

 this.BuildCondition = BuildCondition.IfModificationExists;

 this.InnerTrigger = new IntervalTrigger { IntervalSeconds = 5

};

 }

 [ReflectorProperty("file")]

 public string MonitorFile { get; set; }

 [ReflectorProperty("buildCondition", Required = false)]

 public BuildCondition BuildCondition { get; set; }

 [ReflectorProperty("trigger", InstanceTypeKey = "type", Required =

false)]

 public ITrigger InnerTrigger { get; set; }

 public DateTime NextBuild

 {

 get { return DateTime.MaxValue; }

 }

 public void IntegrationCompleted()

 {

 this.InnerTrigger.IntegrationCompleted();

 this.lastChanged = File.GetLastWriteTime(this.MonitorFile);

 }

 public IntegrationRequest Fire()

 {

 IntegrationRequest request = null;

 if (this.lastChanged.HasValue)

 {

 if (this.InnerTrigger.Fire() != null)

 {

 var changeTime =

File.GetLastWriteTime(this.MonitorFile);

 if (changeTime > this.lastChanged.Value)

 {

 request = new IntegrationRequest(

 this.BuildCondition,

 this.GetType().Name,

 null);

 this.lastChanged = changeTime;

 }

Customising CruiseControl.NET Page 39

 }

 }

 else

 {

 this.lastChanged = File.GetLastWriteTime(this.MonitorFile);

 }

 return request;

 }

 public void Validate(IConfiguration configuration,

 ConfigurationTrace parent,

 IConfigurationErrorProcesser errorProcesser)

 {

 if (string.IsNullOrEmpty(this.MonitorFile))

 {

 errorProcesser.ProcessError("File cannot be empty");

 }

 else if (!File.Exists(this.MonitorFile))

 {

 errorProcesser.ProcessWarning(

 "File '" + this.MonitorFile + "' does not exist");

 }

 }

 }

}

Code 32: Using a nested trigger

There are a few things to note with this example. First, we added a new property
called InnerTrigger. This uses an instance type in the reflection attribute to enable
NetReflector to load the type directly (see below).

Second this property is initialised to a default trigger. We could have forced the user
to always define an inner trigger – but this allows the user to use the existing
configuration without any changes.

Next, when the Fire() method is calling for second and subsequent times, it calls the
inner trigger’s Fire() method. If this returns a non-null result, then we check the file.
Otherwise we leave things unchanged.

Finally, because the inner trigger may need to do something after a build is finished,
we need to pass on the IntegrationCompleted() call to it. In theory we should also
pass on validation to the inner trigger, but to save space I have not added this code.

The inner trigger uses a slightly different syntax to configure, mainly because of the
way NetReflector works. To use the new inner trigger with a 30s interval trigger we
would define it as follows:

<cruisecontrol xmlns="http://thoughtworks.org/ccnet/1/5">

 <project name="DemoTest">

 <triggers>

 <fileChangedTrigger>

 <trigger type="intervalTrigger">

 <seconds>30</seconds>

 </trigger>

 <file>C:\monitor.txt</file>

 <buildCondition>ForceBuild</buildCondition>

 </fileChangedTrigger>

 </triggers>

Customising CruiseControl.NET Page 40

 <tasks>

 <helloWorld name="John Doe"/>

 </tasks>

 </project>

</cruisecontrol>

Code 33: Configuring an inner trigger

Other than this change the trigger is defined in exactly the same way. You can try
playing around with different trigger types and see what happens.

On a side note, since the custom trigger uses the standard interface it can also be
used as an inner trigger in the other trigger types that accept inner triggers (e.g.
filterTrigger, parameterTrigger, etc.)

Customising CruiseControl.NET Page 41

SOURCE CONTROL BLOCKS

OVERVIEW

A source control block provides a link between CruiseControl.NET and a source
code repository. All interactions with the repository go through one of these blocks.

A source control block exposes three actions:

 Gets any modifications since the last check

 Retrieves the updated source code

 Applies a label to the repository

These actions are called at different times in the build process, but they use the same
underlying definition.

THE BASICS

Like the other project items, a source control block is defined by an interface. This
time the interface is called ISourceControl. The full definition is:

public interface ISourceControl

{

 Modification[] GetModifications(IIntegrationResult from,

 IIntegrationResult to);

 void LabelSourceControl(IIntegrationResult result);

 void GetSource(IIntegrationResult result);

 void Initialize(IProject project);

 void Purge(IProject project);

}

Code 34: ISourceControl definition

The first three methods (GetModifications(), LabelSourceControl() and
GetSource()) provide the three actions that a source control provide. The remaining
methods are no longer used within CruiseControl.NET.

When a build is triggered, it makes a call to GetModifications() to see if anything
has changed since the last build. It makes this call irrespective of the build type – for
the simple reason that it needs the list of modifications for later parts of the build
process. If the build condition is IfModificationExists, then the build will be
cancelled if there are no changes. Otherwise the build will continue to the next step
(generating the label and executing any pre-build tasks).

The next step for the source code block is a call to GetSource() to update the source
code. This will pull the code from the source code repository into the working
directory. Once this has finished the tasks in the project can then use the code.

When all the tasks have completed LabelSourceControl() is called to apply a label
to the repository. This label is generated just after the modifications check has
finished.

The first action is performed every time a build is triggered, and the other two are
triggered every time a build is started – the only way to bypass these actions is
internally within the source control block.

Customising CruiseControl.NET Page 42

A BASIC SOURCE CONTROL BLOCK

As an example, we will build a new file system monitor (there is already a source
control block to do this, but it is the simplest type of block to implement.) As a
starter here is the implementation of the block, plus the NetReflector registration:

namespace CCNet.CSharpDemos.Plugin

{

 using System;

 using System.Collections.Generic;

 using System.Linq;

 using System.Text;

 using Exortech.NetReflector;

 using ThoughtWorks.CruiseControl.Core;

 using System.IO;

 [ReflectorType("fileSystemSource")]

 public class NewFileSystemSourceControl

 : ISourceControl

 {

 private Dictionary<string, DateTime> files = new Dictionary<string,

DateTime>();

 [ReflectorProperty("directory")]

 public string DirectoryName { get; set; }

 public Modification[] GetModifications(IIntegrationResult from,

IIntegrationResult to)

 {

 var newList = new Dictionary<string, DateTime>();

 var modifications = new List<Modification>();

 var directory = new DirectoryInfo(this.DirectoryName);

 var newFiles = directory.GetFiles();

 foreach (var file in newFiles)

 {

 var inList = this.files.ContainsKey(file.FullName);

 if (!inList ||

 (this.files[file.FullName] < file.LastWriteTime))

 {

 newList.Add(file.FullName, file.LastWriteTime);

 var modification = new Modification

 {

 FileName = file.Name,

 ModifiedTime = file.LastWriteTime,

 FolderName = file.DirectoryName,

 Type = inList ? "Added" : "Modified"

 };

 modifications.Add(modification);

 }

 if (inList)

 {

 this.files.Remove(file.Name);

 }

 }

 foreach (var file in this.files.Keys)

 {

 var modification = new Modification

 {

Customising CruiseControl.NET Page 43

 FileName = Path.GetFileName(file),

 ModifiedTime = DateTime.Now,

 FolderName = Path.GetDirectoryName(file),

 Type = "Deleted"

 };

 modifications.Add(modification);

 }

 this.files = newList;

 return modifications.ToArray();

 }

 public void LabelSourceControl(IIntegrationResult result)

 {

 var fileName = Path.Combine(

 this.DirectoryName,

 DateTime.Now.ToString("yyyyMMddHHmmss") + ".label");

 File.WriteAllText(fileName, result.Label);

 this.files.Add(fileName, DateTime.Now);

 }

 public void GetSource(IIntegrationResult result)

 {

 foreach (var modification in result.Modifications)

 {

 var source = Path.Combine(

 modification.FolderName,

 modification.FileName);

 var destination = result.BaseFromWorkingDirectory(

 modification.FileName);

 if (File.Exists(source))

 {

 File.Copy(source, destination, true);

 }

 else

 {

 File.Delete(destination);

 }

 }

 }

 public void Initialize(IProject project)

 {

 // Not needed

 }

 public void Purge(IProject project)

 {

 // Not needed

 }

 }

}

Code 35: New file system source control block

As you can see, there is quite a bit to even a basic source control block! Especially to
implement one properly (and even this implementation has some limitations.)

There is an internal store of all the files and their last modified time in this class. This
is primarily to simplify things. When the modifications are checked, it gets the

Customising CruiseControl.NET Page 44

names of all the files in the directory and then builds up a modification list of all the
changes.

Each modification is stored in a Modification instance. The basic properties are the
file and folder names – everything else is optional (although helpful.) Additionally
there are several other properties which are not available from a file system – such as
the person who modified the file, the version number, etc.

If there are no modifications then this method will return an empty array – which is
what the system is expecting.

The GetSource()method copies any new or modified files to the working folder,
while deleting any old files.

Finally, the LabelSourceControl() method simply adds a new file to the folder
containing the label. This is because a file system does not have any labelling
functionality. It also adds the file to the internal cache so it is not used to start a build
on the next check!

TO AND FROM RESULTS

The GetModifications() method has a slightly different signature from most project
items. This method takes in both a from and a to result. The question is why?

The answer lies in the type of data that this method is returning. The other methods
are all for a single point in time – the time that the method is called. In contrast the
GetModifications() method is getting data for a range. This range is from when the
last build ran to the start of the current build:

Figure 9: Timelines for from and to results

There are two possibilities for generating this range. First, the source control block
can get all the modifications from the end of the last build to the start of the next:

Figure 10: Selecting from end of previous build

This approach would use from.EndTime as the starting date for the selection and
to.StartTime as the ending date.

The other option is to retrieve from the start of the last build to the start of the
current build:

Customising CruiseControl.NET Page 45

Figure 11: Selecting from start of previous build

This approach would use from.StartTime as the starting date for the selection and
to.StartTime as the ending date.

Either approach is valid – it just depends on how the source control provider works.
The developer can choose to use either approach or even something completely
different.

PASSING DATA BETWEEN CALLS

Sometimes a source control block might want to pass data between the various calls
that are invoked. For example, the GetModifications() method might get the
identifier of the last commit. The GetSource() method could then use this identifier
instead of re-querying the repository.

While it is possible to store this value as a field within the block, there is no
guarantee that this will be retained between the two calls. Instead there is an
alternate approach that will always work – the SourceControlData property on
IIntegrationResult.

This property is a list of NameValuePair – simply a value that has a known name.
Any of the source control methods can place values in this list, and they will be
available through-out the entire build.

Additionally these values are also persisted between builds. This means a source
control block could store the current identifier in the GetModifications() method
and use it in the GetSource() method. The next time the GetModifications()
method is called it can use this value as its starting point, rather than the date/time
properties.

PARSERS

A common pattern for source control blocks is to have two classes. One performs the
actual source control operations and the other parses the results from the get
modifications action. This pattern is so common it has its own interface -
IHistoryParser.

The definition for this interface is:

public interface IHistoryParser

{

 Modification[] Parse(TextReader history, DateTime from, DateTime to);

}

Code 36: IHistoryParser definition

The single method is used to parse all the modifications within a date range. The
source control block will typically get the results, wrap the results in a TextReader

Customising CruiseControl.NET Page 46

and then call the interface. The from and to dates generally come from the from and
to integration results that are passed to the source control block, although the source
control block can pass in whatever values it wants.

For example, we could build a parser like the following:

namespace CCNet.CSharpDemos.Plugin.SourceControl

{

 using System;

 using System.Collections.Generic;

 using System.IO;

 using System.Xml.Linq;

 using ThoughtWorks.CruiseControl.Core;

 using ThoughtWorks.CruiseControl.Core.Sourcecontrol;

 public class IndexFileHistoryParser

 : IHistoryParser

 {

 public Modification[] Parse(TextReader history, DateTime from,

DateTime to)

 {

 var modifications = new List<Modification>();

 var document = XDocument.Load(history);

 var fromDate = from.ToString("s");

 var toDate = to.ToString("s");

 foreach (XElement change in document.Descendants("change"))

 {

 var date = DateTime.Parse(

 change.Attribute("date").Value);

 if ((date >= from) &&

 (date <= to))

 {

 var modification = new Modification

 {

 FileName = change.Attribute("file").Value,

 ModifiedTime = date,

 FolderName = change.Attribute("folder").Value,

 Type = change.Attribute("type").Value

 };

 modifications.Add(modification);

 }

 }

 return modifications.ToArray();

 }

 }

}

Code 37: History parser for retrieving entries from an index file

The parser just iterates through an index file and retrieves all the entries that have a
date within the range.

To use this parser would be use the following source control block:

namespace CCNet.CSharpDemos.Plugin.SourceControl

{

 using System;

 using System.IO;

 using Exortech.NetReflector;

 using ThoughtWorks.CruiseControl.Core;

Customising CruiseControl.NET Page 47

 [ReflectorType("indexFileSource")]

 public class IndexFileSourceControl

 : ISourceControl

 {

 [ReflectorProperty("file")]

 public string FileName { get; set; }

 public Modification[] GetModifications(IIntegrationResult from,

IIntegrationResult to)

 {

 var path = to.BaseFromWorkingDirectory(this.FileName);

 using (var reader = new StreamReader(path))

 {

 var parser = new IndexFileHistoryParser();

 return parser.Parse(reader, from.StartTime, to.StartTime);

 }

 }

 public void LabelSourceControl(IIntegrationResult result)

 {

 var fileName = Path.Combine(

 Path.GetDirectoryName(this.FileName),

 DateTime.Now.ToString("yyyyMMddHHmmss") + ".label");

 File.WriteAllText(fileName, result.Label);

 }

 public void GetSource(IIntegrationResult result)

 {

 foreach (var modification in result.Modifications)

 {

 var source = Path.Combine(

 modification.FolderName,

 modification.FileName);

 var destination = result.BaseFromWorkingDirectory(

 modification.FileName);

 if (File.Exists(source))

 {

 File.Copy(source, destination, true);

 }

 else

 {

 File.Delete(destination);

 }

 }

 }

 public void Initialize(IProject project)

 {

 // Not needed

 }

 public void Purge(IProject project)

 {

 // Not needed

 }

 }

}

Code 38: Index file source control

Customising CruiseControl.NET Page 48

This is very similar to the file system source control, but it reads from the index file
using the parser. The parser is used to read the index file, instead of doing it directly
in the source control block.

Now this may seem like overkill for something simple like this, but it means that the
parser can be re-used by similar source control blocks. Additionally there are other
classes that make use of this pattern to simplify development even more!

ABSTRACT BASE CLASSES

Source control blocks can also use the same IParamatisedItem interface as a
task/publisher. To simplify the implementation of these interfaces there is an
abstract base class that provides the basic function – SourceControlBase.

While this abstract class doesn’t provide much in the way of additional functionality
(just the ability to use parameters), there is another abstract class on top of this one
that allows for executing an external source control provider –
ProcessSourceControl. This class is similar to BaseExecutableTask in that it provides
helper methods for executing an external application.

For example, if we have an external source control application called GetMyCode,
we could write a source control block to use it like this:

namespace CCNet.CSharpDemos.Plugin.SourceControl

{

 using Exortech.NetReflector;

 using ThoughtWorks.CruiseControl.Core;

 using ThoughtWorks.CruiseControl.Core.Sourcecontrol;

 using ThoughtWorks.CruiseControl.Core.Tasks;

 using ThoughtWorks.CruiseControl.Core.Util;

 [ReflectorType("getMyCode")]

 public class GetMyCodeSourceControl

 : ProcessSourceControl

 {

 public GetMyCodeSourceControl()

 : this(new ProcessExecutor(), new IndexFileHistoryParser())

 {

 }

 public GetMyCodeSourceControl(ProcessExecutor executor,

IHistoryParser parser)

 : base(parser, executor)

 {

 }

 [ReflectorProperty("executable", Required = false)]

 public string Executable { get; set; }

 [ReflectorProperty("source")]

 public string Source { get; set; }

 public override Modification[] GetModifications(IIntegrationResult

from, IIntegrationResult to)

 {

 var processResult = this.ExecuteCommand(to, "list");

 var modifications = this.ParseModifications(processResult,

 from.StartTime, to.StartTime);

Customising CruiseControl.NET Page 49

 return modifications;

 }

 public override void LabelSourceControl(IIntegrationResult result)

 {

 if (result.Succeeded)

 {

 var processResult = this.ExecuteCommand(result,

 "label", result.Label);

 result.AddTaskResult(

 new ProcessTaskResult(processResult));

 }

 }

 public override void GetSource(IIntegrationResult result)

 {

 var processResult = this.ExecuteCommand(result, "get");

 result.AddTaskResult(

 new ProcessTaskResult(processResult));

 }

 private ProcessResult ExecuteCommand(IIntegrationResult result,

 string command, params string[] args)

 {

 var buffer = new PrivateArguments(command);

 buffer.Add(this.Source);

 foreach (var arg in args)

 {

 buffer.Add(string.Empty,

 arg,

 true);

 }

 var executable = string.IsNullOrEmpty(this.Executable) ?

 "GetMyCode" : this.Executable;

 var processInfo = new ProcessInfo(

 result.BaseFromWorkingDirectory(executable),

 buffer,

 result.WorkingDirectory);

 var processResult = this.Execute(processInfo);

 return processResult;

 }

 }

}

Code 39: Source control block to execute an external application

The underlying abstract class has a constructor that requires a ProcessExecutor and
an IHistoryParser. Most of the time the defaults are fine (e.g. when the server needs
an instance of this class), but for unit testing we might need to use some mocks
instead – hence the two constructors.

Each of the three steps (get modifications, label source and get source) call through
to a helper method called ExecuteCommand(). This method constructs the list of
arguments and passes them through to a base method called Execute(), which is
responsible for actually executing the command.

For getting the modifications there is another base method t assist with this -
ParseModifications(). This method convert wraps the execution result in a reader
and then calls the associated IHistoryParser to do the actual parse.

Customising CruiseControl.NET Page 50

And that’s pretty much all there is to it.

There are a couple of points to note on the ExecuteCommand() helper method.
Internally this method generates an instance of PrivateArguments. This class is used
to hide passwords and other private information from the logs and other public
information. There is an associated class called PrivateString, which NetReflector
can load. Unless specifically told, this class will hide the string value so external
viewers cannot see it.

PrivateArguments knows about these strings and will correctly request the hidden
value when needed (i.e. when passing the arguments) and the rest of the time will
only show the obscured value.

As well as PrivateArguments, the method also uses a ProcessInfo instance. This
instance is used to pass the command values (executable, arguments and path) to the
underlying infrastructure for running the executable.

Customising CruiseControl.NET Page 51

LABELLERS

OVERVIEW

A labeller generates a label for use within a build. This label can be in any format –
CruiseControl.NET does not care – so this opens many possibilities for different
types of labellers.

The generated label is not directly applied to the source code repository – instead it
is stored in the IIntegrationResult and made available to the tasks/publishers.
However it is used later by the source control block for labelling the code (after the
tasks have run, but before the publishers.)

THE BASICS

A labeller must implement the ILabeller interface. This has the following definition:

public interface ILabeller

 : ITask

{

 string Generate(IIntegrationResult integrationResult);

}

Code 40: ILabeller definition

This interface also includes the interface for ITask. This means that a labeller can also
be run as a task in one of the task blocks. The default action in this scenario is to
generate a new label and store it in the result. However this is not recommended as
it can screw up some other areas within CruiseControl.NET.

BASIC EXAMPLE

For this example we are going to build a labeller that generates a random label. The
basic implementation, with reflection, looks like this:

namespace CCNet.CSharpDemos.Plugin

{

 using System;

 using Exortech.NetReflector;

 using ThoughtWorks.CruiseControl.Core;

 [ReflectorType("randomLabeller")]

 public class RandomLabeller

 : ILabeller

 {

 public string Generate(IIntegrationResult integrationResult)

 {

 var rand = new Random();

 var label = rand.Next().ToString();

 return label;

 }

 public void Run(IIntegrationResult result)

 {

 result.Label = this.Generate(result);

 }

 }

}

Customising CruiseControl.NET Page 52

Code 41: Random labeller

This implementation provides the implementation for both interfaces – although the
Run() method merely calls through to the Generate() method.

The Generate() method generates a string containing the label, which is returned to
the caller. When the labeller is called as part of the build process the label is
automatically stored in the result.

And that’s all there is to a labeller. To call the labeller we would modify our
configuration as follows:

<cruisecontrol xmlns="http://thoughtworks.org/ccnet/1/5">

 <project name="DemoTest">

 <triggers>

 <fileChangedTrigger>

 <trigger type="intervalTrigger">

 <seconds>30</seconds>

 </trigger>

 <file>C:\monitor.txt</file>

 <buildCondition>ForceBuild</buildCondition>

 </fileChangedTrigger>

 </triggers>

 <labeller type="randomLabeller"/>

 <tasks>

 <helloWorld name="John Doe"/>

 </tasks>

 </project>

</cruisecontrol>

Code 42: Configuration to use the randomLabeller

This configuration will generate a random number to use as the label for a project.

ADDITIONAL INTERFACES

A labeller can also have some of the same additional interfaces as a task. These
interfaces are IConfigurationValidation and IParamatisedItem. They work in the
same way as the task implementations – so we wanted to add a maximum value
property to our random number labeller and validate it, we would do the following:

namespace CCNet.CSharpDemos.Plugin.Labellers

{

 using System;

 using Exortech.NetReflector;

 using ThoughtWorks.CruiseControl.Core;

 using ThoughtWorks.CruiseControl.Core.Config;

 [ReflectorType("randomLabeller")]

 public class RandomLabeller

 : ILabeller, IConfigurationValidation

 {

 public RandomLabeller()

 {

 this.MaximumValue = int.MaxValue;

 }

 [ReflectorProperty("max", Required = false)]

 public int MaximumValue { get; set; }

 public string Generate(IIntegrationResult integrationResult)

Customising CruiseControl.NET Page 53

 {

 var rand = new Random();

 var label = rand.Next(this.MaximumValue).ToString();

 return label;

 }

 public void Run(IIntegrationResult result)

 {

 result.Label = this.Generate(result);

 }

 public void Validate(IConfiguration configuration,

 ConfigurationTrace parent,

 IConfigurationErrorProcesser errorProcesser)

 {

 if (this.MaximumValue <= 0)

 {

 errorProcesser.ProcessError(

 "The maximum value must be greater than zero");

 }

 }

}

}

Figure 12: Expanding the labeller to include validation

This simply adds a new property and then validates that it is greater than zero.

A COMMON BASE

Like tasks, most of the interfaces are used for the labellers. So again a common base
class has been provided to simplify development. This class is called LabellerBase
and implements all the required functionality for the IParamatisedItem and ITask
interfaces.

For example, the random labeller can be converted to use this common base:

namespace CCNet.CSharpDemos.Plugin.Labellers

{

 using System;

 using Exortech.NetReflector;

 using ThoughtWorks.CruiseControl.Core;

 using ThoughtWorks.CruiseControl.Core.Config;

 using ThoughtWorks.CruiseControl.Core.Label;

 [ReflectorType("randomLabeller2")]

 public class RandomLabeller2

 : LabellerBase, IConfigurationValidation

 {

 public RandomLabeller2()

 {

 this.MaximumValue = int.MaxValue;

 }

 [ReflectorProperty("max", Required = false)]

 public int MaximumValue { get; set; }

 public override string Generate(IIntegrationResult

integrationResult)

 {

 var rand = new Random();

Customising CruiseControl.NET Page 54

 var label = rand.Next(this.MaximumValue).ToString();

 return label;

 }

 public void Validate(IConfiguration configuration,

 ConfigurationTrace parent,

 IConfigurationErrorProcesser errorProcesser)

 {

 if (this.MaximumValue <= 0)

 {

 errorProcesser.ProcessError(

 "The maximum value must be greater than zero");

 }

 }

 }

}

Code 43: A labeller derived from LabellerBase

While this is not much difference in code, it also adds new functionality to the
labellers – the ability for the new labeller to handle parameters. Additionally as new
functionality is added to LabellerBase the derived classes will automatically inherit
it.

Customising CruiseControl.NET Page 55

STATE MANAGERS

OVERVIEW

A state manager saves and loads the state of a project. As such it is used to persist
the project’s state between builds, allowing for the server to be stopped and started
without losing the state.

THE BASICS

Like all other project items a state manager has an interface to inherit. This interface
is IStateManager and is defined as:

public interface IStateManager

{

 IIntegrationResult LoadState(string project);

 void SaveState(IIntegrationResult result);

 bool HasPreviousState(string project);

}

Code 44: IStateManager interface

LoadState() is called the first time a project is built after the server has been started.
After this it will not be called again, unless the server is restarted. It will load the last
state of the project into memory as an IIntegrationResult.

In contrast SaveState() is called at the end of every build. This ensures that the state
is always up-to-date. This will save the IIntegrationResult to whatever persistence
medium is being used.

Finally, HasPreviousState() is used together with LoadState(). If
HasPreviousState() returns false, then the system know not to call LoadState() as
there is nothing to load, instead the system will generate a blank
IIntegrationResult.

BASIC EXAMPLE

The default state manager in CruiseControl.NET saves the state as an XML file, we
will write an alternate version that saves it as a plain text file. The basic
implementation would look like this:

namespace CCNet.CSharpDemos.Plugin.State

{

 using System;

 using System.IO;

 using Exortech.NetReflector;

 using ThoughtWorks.CruiseControl.Core;

 using ThoughtWorks.CruiseControl.Core.State;

 using ThoughtWorks.CruiseControl.Core.Util;

 using ThoughtWorks.CruiseControl.Remote;

 [ReflectorType("plainTextState")]

 public class PlainTextStateManager

 : IStateManager

 {

Customising CruiseControl.NET Page 56

 private readonly IFileSystem fileSystem;

 public PlainTextStateManager()

 : this(new SystemIoFileSystem())

 {

 }

 public PlainTextStateManager(IFileSystem fileSystem)

 {

 this.fileSystem = fileSystem;

 }

 public IIntegrationResult LoadState(string project)

 {

 var path = this.GeneratePath(project);

 using (var reader = new StreamReader(

 this.fileSystem.OpenInputStream(path)))

 {

 var status = (IntegrationStatus)

 Enum.Parse(typeof(IntegrationStatus),

reader.ReadLine());

 var lastSummary = new IntegrationSummary(

 status,

 reader.ReadLine(),

 reader.ReadLine(),

 DateTime.Parse(reader.ReadLine()));

 var result = new IntegrationResult(

 project,

 reader.ReadLine(),

 reader.ReadLine(),

 null,

 lastSummary);

 return result;

 }

 }

 public void SaveState(IIntegrationResult result)

 {

 var path = this.GeneratePath(result.ProjectName);

 using (var writer = new StreamWriter(

 this.fileSystem.OpenOutputStream(path)))

 {

 writer.WriteLine(result.Status);

 writer.WriteLine(result.Label);

 writer.WriteLine(result.LastSuccessfulIntegrationLabel);

 writer.WriteLine(result.StartTime.ToString("o"));

 writer.WriteLine(result.WorkingDirectory);

 writer.WriteLine(result.ArtifactDirectory);

 }

 }

 public bool HasPreviousState(string project)

 {

 var path = this.GeneratePath(project);

 return this.fileSystem.FileExists(path);

 }

 private string GeneratePath(string project)

 {

 var path = Path.Combine(Environment.CurrentDirectory,

 project + ".txt");

Customising CruiseControl.NET Page 57

 return path;

 }

 }

}

Code 45: Plain text state manager

This example uses some of the utility classes and interfaces to assist with unit
testing. The IFileSystem interface (and its default implementation
SystemIoFileSystem) is used to abstract any operations with the file system. This
allows a developer to write unit tests without needing to actually manipulate the file
system. Since this is good practise the example uses this approach.

The LoadState() method is very simple – it just loads a minimal set of data from the
file. It assumes that all the lines are in order (probably not a good assumption) and it
only loads a subset of the full properties available (see IIntegrationResult:
Integration Results below).

The SaveState() method is the opposite – it just writes the minimal data set to the
file, with one line per property.

The HasPreviousState() just checks for the existence of the file – if the file is not
there then the state has never been written – very simple.

These three methods all use a helper method called GeneratePath(). This method
just generates the file name. Using the helper method means the code is not
duplicated in each of the methods.

And that’s all there is to writing a state manager. To use this state manager the
following configuration would be needed:

<project name="DemoTest">

 <state type="plainTextState"/>

</project>

Code 46: Example configuration to use the state manager

MORE DETAILS

It is possible to use NetReflector properties and configuration validation on state
managers, just like any other project item.

Customising CruiseControl.NET Page 58

SERVER EXTENSIONS

OVERVIEW

A server extension is an extension to the entire server, not just a single project. This
allows for expanding the actual server functionality in a number of different ways.

A server extension has a very simple lifecycle. It is loaded when the server is loaded
– this includes any initialisation that the extension needs to perform. When the
server is started, any extensions are also started – likewise when the server is
stopped, all extensions are stopped as well.

Given this simple lifecycle, what value do server extensions provide?

First, the server exposes a number of methods that an extension can call. These are
useful for adding a new communications protocol (e.g. WCF), or adding a new way
that the server can react to external events (e.g. a file change).

Second, the server also exposes a number of different events. An extension can listen
to one (or more) of these events and then do something based on an event occurring.
For example, an extension could listen to the build starting event and cancel the
event if there is insufficient memory, or wait for projects to stop and send
notification messages to any administrators.

THE BASICS

While server extensions are slightly different from project items, they still need to
implement an interface. The interface to implement is called
ICruiseServerExtension and is defined as follows:

public interface ICruiseServerExtension

{

 void Initialise(ICruiseServer server, ExtensionConfiguration

extensionConfig);

 void Start();

 void Stop();

 void Abort();

}

Code 47: ICruiseServerExtension definition

The Initialise() method is called when the server is first started. This provides the
point where the extension can initialise itself, including loading any required
configuration. The server argument is the server that is initialising, while the
extensionConfig argument is for any associated configuration (see below).

The remaining methods (Start(), Stop() and Abort()) are pass-through methods
from the server – whenever the server is starting, stopping or aborting the associated
method will be called. Normally these methods will only be called once (either
Stop() or Abort() will be called), but in some circumstances (i.e. restarting) they
may be called multiple times.

As such, the most basic server extension would be:

Customising CruiseControl.NET Page 59

namespace CCNet.CSharpDemos.Plugin.Extensions

{

 using System;

 using ThoughtWorks.CruiseControl.Remote;

 public class DoSomething

 : ICruiseServerExtension

 {

 private ICruiseServer server;

 public void Initialise(ICruiseServer server,

 ExtensionConfiguration extensionConfig)

 {

 this.server = server;

 Console.WriteLine("Initialise");

 }

 public void Start()

 {

 Console.WriteLine("Start");

 }

 public void Stop()

 {

 Console.WriteLine("Stop");

 }

 public void Abort()

 {

 Console.WriteLine("Abort");

 }

 }

}

 Code 48: Server extension that does nothing

This extension does not do anything, it just writes some messages to the console
whenever one of the methods is called.

CONFIGURING AN EXTENSION

A server extension has a different configuration location than a project item. A
project item is configured in ccnet.config, a server extension is configured in the
application config file (e.g. ccnet.exe.config or ccservice.exe.config.)

This configuration requires two parts – a config section definition and the actual
definition. The configu section definition is required for the .NET framework to read
the configuration. If the default config file is used it will already include this
definition, but if not the following line needs to be added to the <configSections>
element:

<section name="cruiseServer"

type="ThoughtWorks.CruiseControl.Core.Config.ServerConfigurationHandler,

ThoughtWorks.CruiseControl.Core"/>

Code 49: Configuration section definition

Once this has been defined, a <cruiseServer> element can be added. This element
will contain all the extension definitions. For example to call the above extension
would be configured as follows:

Customising CruiseControl.NET Page 60

<cruiseServer>

 <extension type="CCNet.CSharpDemos.Plugin.Extensions.DoSomething,

CCNet.CSharpDemos.Plugin" />

</cruiseServer>

Code 50: Defining the DoSomething extension

Each extension requires its own <extension> element, with a type attribute defining
the extension type. This needs to be a standard .NET type definition (it can also
include the public key and culture information if desired.)

HANDLING EVENTS

The above example does not do anything beyond the basics. It would be nice to
interact with the server and do some processing in response to events that occur.
This can be done by listening to events on the ICruiseServer instance.

The following events are defined:

Table 1: ICruiseServer events

Event Description

ProjectStarting A project is starting – this event can be cancelled.

ProjectStarted A project has been started.

ProjectStopping A project is stopping – this event can be cancelled.

ProjectStopped A project has been stopped.

ForceBuildReceived A force build request has been received – this event can be
cancelled.

ForceBuildProcessed A force build has been processed. This does not mean that
the force build has been completed, just that the request has
been added to the queue.

AbortBuildReceived An abort build request has been received – this event can be
cancelled.

AbortBuildProcessed An abort build request has been processed. This does not
mean that the build has been aborted, just that the message
has been received and the abort request made.

SendMessageReceived A send message request has been received – this event can
be cancelled.

SendMessageProcessed A send message request has been processed and the message
added to the project.

IntegrationStarted An integration (build) has started – this event can be
cancelled. This means that the build request is first in the
queue and is ready to begin the actual build process.

IntegrationCompleted An integration (build) has completed – that the build has
either finished or had a fatal error and been stopped.

These events allow the extension to interact with the server and if necessary change
its functionality. For example, we could expand the above extension to only allow
five projects to run at the same time:

Customising CruiseControl.NET Page 61

namespace CCNet.CSharpDemos.Plugin.Extensions

{

 using System;

 using ThoughtWorks.CruiseControl.Remote;

 public class DoSomething

 : ICruiseServerExtension

 {

 private ICruiseServer server;

 private int count = 0;

 public void Initialise(ICruiseServer server,

 ExtensionConfiguration extensionConfig)

 {

 this.server = server;

 this.server.ProjectStarting += (o, e) =>

 {

 if (this.count >= 4)

 {

 e.Cancel = true;

 }

 else

 {

 this.count++;

 }

 };

 this.server.ProjectStopped += (o, e) =>

 {

 this.count--;

 };

 Console.WriteLine("Initialise");

 }

 public void Start()

 {

 Console.WriteLine("Start");

 }

 public void Stop()

 {

 Console.WriteLine("Stop");

 }

 public void Abort()

 {

 Console.WriteLine("Abort");

 }

 }

}

Code 51: Limiting the number of running projects via an extension

The extension handles the starting and stopped events for projects. When a project is
trying to start the extension will check if there is a slot available, if not it will cancel
the start event.

If the stopping event was used instead there would be the possibility of more than
the allowed projects running, as the time to stop a project is not always immediate (if
a build is running, the build will finish before the project is stopped.) Choosing the
stopped event ensures that this cannot happen.

Customising CruiseControl.NET Page 62

This is a very simplistic implementation of this functionality. It does not allow for
queuing starts, or concurrent starts, but it does show the basics of how events can be
handled.

PASSING CONFIGURATION

While the above sample works, it is not very flexible. It would be nice to allow the
user to configure the extension so they can choose how many projects can run. This
is done by adding XML elements to the configuration.

So, we can expand our above configuration like so:

<extension type="CCNet.CSharpDemos.Plugin.Extensions.DoSomething,

CCNet.CSharpDemos.Plugin">

 <allowedProjects>15</allowedProjects>

</extension>

Code 52: Passing the number of projects in the configuration

When the extension is initialised it is passed an ExtensionConfiguration instance.
This instance contains the type of the extension, plus any XML elements that were
defined. All the extension needs to do is search these elements for the required item:

namespace CCNet.CSharpDemos.Plugin.Extensions

{

 using System;

 using System.Linq;

 using ThoughtWorks.CruiseControl.Remote;

 public class DoSomething

 : ICruiseServerExtension

 {

 private ICruiseServer server;

 private int count = 0;

 private int maxCount = 4;

 public void Initialise(ICruiseServer server,

 ExtensionConfiguration extensionConfig)

 {

 var projectsElement = extensionConfig.Items

 .SingleOrDefault(n => n.Name == "allowedProjects");

 if (projectsElement != null)

 {

 this.maxCount = int.Parse(

 projectsElement.InnerText) - 1;

 }

 this.server = server;

 this.server.ProjectStarting += (o, e) =>

 {

 if (this.count >= this.maxCount)

 {

 e.Cancel = true;

 }

 else

 {

 this.count++;

 }

 };

 this.server.ProjectStopped += (o, e) =>

Customising CruiseControl.NET Page 63

 {

 this.count--;

 };

 Console.WriteLine("Initialise");

 }

 public void Start()

 {

 Console.WriteLine("Start");

 }

 public void Stop()

 {

 Console.WriteLine("Stop");

 }

 public void Abort()

 {

 Console.WriteLine("Abort");

 }

 }

}

Code 53: Server extension with configuration.

This can be expanded to take in any parameters required, perform validation, etc. It
is left up to the developer to decide what to do ad how.

Customising CruiseControl.NET Page 64

COMMON COMPONENTS

IINTEGRATIONRESULT: INTEGRATION RESULTS

One of the most important interfaces for building project items is
IIntegrationResult. This class has a number of properties and methods that allow
the project items to pass and return information.

An IIntegrationResult is initialised at the start of a build and progressively built up
over the build. It is passed into every single project item when they run, and is used
to pass information around.

The properties and methods can be broken into the following categories:

 Project and build information

 Status information

 Modifications

 Historical information

 Logging

 Helpers

PROJECT AND BUILD INFORMATION

The properties in this category relate to the project and build as a whole. They are
typically set by the system and should not be modified.

There are the following properties defined:

ArtifactDirectory This is the location for all the project artefacts. Any file outputs
from a task should be stored in this location.

 Set: this property is set when a build starts.

 Change: this property should not be changed.

BuildCondition The condition for the current build. This will be either
IfModificationExists or ForceBuild (there is a third
condition, NoBuild, but it is not possible to get it during a
build.)

 If the condition is IfModificationExists then it means that the
build was triggered because there were changes detected to the
source.

 Set: this property is set at the start of the build. If the build was
initiated by a trigger, the trigger is responsible for setting this
property. If the build is triggered by a client, then the client is
responsible for setting this property.

 Changes: this property is read-only and cannot be changed.

BuildLogDirectory This is the directory that the logs are written to. This is
typically a sub-directory of the artefacts directory.

 Set: this property is set when a build starts.

Customising CruiseControl.NET Page 65

 Change: this property should not be changed.

IntegrationProperties Any “integration” properties that were added
automatically by the system. See Integration Properties below.

 Set: this property is set automatically by the system prior to
checking for any modifications.

 Change: this property is read-only and cannot be changed.

IntegrationRequest The incoming request details. This includes the following
properties:

 BuildCondition – this will be the same as BuildCondition in
the result.

 Source – the source of the request. For triggered builds this
will be the name of the trigger, for user-forced builds this
will be the name of the originating machine.

 UserName – the name of the user who started a build. This is
new for 1.5.

 BuildValues – any parameters for the build. This is new for 1.5.

 RequestTime – the date and time the request was generated.
This will typically be the date and time on the originating
machine for user-forced builds.

 PublishOnSourceControlException – whether a build
should be published if there is an exception during the get
modifications step of a build. This is set automatically by
the system (based on the configuration) and is used to
control the flow of logic within a build.

 Set: this property is set by the system when the build starts.
The internal properties are set by the build source (trigger or
remote machine).

 Change: this property is read-only and cannot be changed. The
internal properties are also read-only.

Parameters Any parameters that have been passed to the project. This
includes all the user-entered parameters, plus the system level
values (see below.)

 Set: these are set at the beginning of the build, and most of
them do not change. However some values are updated during
the build (e.g. build label.)

 Change: this property should not be changed.

ProjectName The name of the project. This is the project name form the
configuration.

 Set: this property is set at the start of a build.

 Change: this property is read-only and cannot be changed.

Customising CruiseControl.NET Page 66

ProjectUrl The URL to the project’s summary page. This typically points
to a web dashboard instance, but can be configured to point
elsewhere.

 Set: this property is set when a build starts.

 Change: this property should not be changed.

WorkingDirectory The working directory as configured within the project
configuration. This is typically the working location for the
entire project – the source code is retrieved this, the tasks and
publishers all use this as their base directory, etc.

 However, it is possible for the user to configure source control
blocks and tasks to use different locations.

 Set: this property is set when a build starts.

 Change: this property should not be changed.

STATUS INFORMATION

These properties define information on the current status of the build.

BuildProgressInformation This is a helper property for reporting progress
information during a build. It is typically used to store start
times for a task and any relevant information that has occurred
within a task.

 This property exposes the following methods:

 SignalStartRunTask() – initialises the start of a new project
item, initialises the object for monitoring the progress.

 AddTaskInformation() – adds some information from the
current item.

 GetBuildProgressInformation() – retrieves the information
on the currently running item.

 Set: this property is set at the start of a build.

 Change: this property is read-only and cannot be changed.
However the internal methods can be used to change the
current build progress.

EndTime The time the tasks section completed running. As such this
value is not defined up to this point. Any tasks in the
publishers section can use this property, as can the apply label
step of the source control block.

 Set: this property is set automatically by the system at the end
of the tasks block.

 Changes: this property is read-only and cannot be directly
changed. It is changed by system using the MarkEndTime()

Customising CruiseControl.NET Page 67

method – this method should not be called by any project
items.

ExceptionResult The details of an exception that has occurred in a build.

 Set: This will be set automatically if the system detects an
unhandled exception in a task or publisher.

 Change: this property is set automatically by the system and
should not be changed.

Failed Whether the build failed or not. This is based on the value in
the Status property.

 Set: this is a calculated property.

 Change: this property is read-only and cannot be directly
changed.

Fixed Whether the build has successful fixed a prior breaking build.
This checks both the Status property for the current build, and
the Status property of the previous build.

 Set: this is a calculated property.

 Change: this property is read-only and cannot be directly
changed.

HasSourceControlError Returns true if there was an error in the source control
block.

 Set: this is a calculated property.

 Change: this property is read-only and cannot be directly
changed.

Label This is the current label for the project. At the beginning of the
build this value is not set – it is only set after the source code
checks and the labeller has run.

 Set: this property is set automatically at the end of the generate
label phase.

 Change: this property can be changed at anytime.

SourceControlError The details of an exception that occurred during a source
control operation.

 Set: this will be set automatically if the system detects an
unhandled exception in the source control block.

 Change: this is set automatically by the system and should not
be changed.

StartTime The time the build started.

 Set: this is set at the start of the build.

Customising CruiseControl.NET Page 68

 Change: this property is set automatically and MUST not be
changed.

Status The current status of the build. This can be one of the following
values:

 Success
 Failure
 Exception
 Unknown
 Cancelled

 Prior to version 1.5 this property needed to be manually set
when a task completed. It was up to the task to decide
whatever logic was necessary to combine statuses (i.e. if the
previous item failed what would the new status be, etc.)

 Starting with 1.5 the status is now automatically set depending
on the result returned from the Execute() method call.

 The system will monitor this status at the end of every project
item. If the status is set to Failure or Exception, then the
current phase will be cancelled and the publishers executed.

 Set: this is set to Unknown at the start of the build.

 Change: this can be freely changed by any project item.

Succeeded Whether the build is successful or not. This is based on the
value in the Status property. This is only the status at the
current item, if a later item fails the build; the previous items
are not notified.

 Set: this is a calculated property.

 Change: this property is read-only and cannot be directly
changed.

TotalIntegrationTime The total time it took the build to run, from checking for
modifications to the end of the tasks section.

 See the description for EndTime for when this property is
defined.

 Set: this is a calculated property.

 Change: this property is read-only and cannot be directly
changed.

Additionally there are the following methods to update the status information:

IsInitial() Whether this is the first build for a project or not. This is only
be true if a project has never been built before. Otherwise it
will be false, even when a project has been stopped and
started.

Customising CruiseControl.NET Page 69

MarkEndTime() This is an internal helper method for marking the finish time of
a build. It must not be called by any project items.

MarkStartTime() This is an internal helper method for marking the start time of
a build. It must not be called by any project items.

MODIFICATIONS

These properties hold information on who modified the source code:

LastChangeNumber The identifier of the last change. This will depend on the source
control block.

 In 1.4.4 this was changed from an int value to a string.

 Set: this is a calculated property (from Modifications)

 Change: this property is read-only and cannot be changed
directly.

Modifications These are the modifications that have been detected by the
source control block. When a build starts this property is
undefined.

 Set: this property is set by the system after the source control
block has retrieved the modifications.

 Change: this property is set automatically by the system and
should not be changed.

SourceControlData This is a holder property that allows a source control block to
pass additional information. This is typically used to pass
information between the various source control block steps
(e.g. between get modifications and get source, etc.)

 As such the data in this property cannot be guaranteed. If a
task wants to use a potential value from this property it must
always check to see if the value is there first!

 Set: this property can be freely set by any project item.

 Change: this property can be freely changed by any project
item.

Additionally there are the following methods that help when working with
modifications:

HasModifications() A helper method to check if there are any modifications for the
build. If there are no modifications then this method will return
false.

ShouldRunBuild() A helper method for checking whether a build should run or
not. This is an internal method that is used by the system.

 Internally this method checks whether there are any
modifications or if the build condition is ForceBuild.

Customising CruiseControl.NET Page 70

HISTORICAL INFORMATION

The result also holds a number of properties from the previous integration. These
properties can be used to see what has happened in the project. These properties are:

FailureUsers A list of any users who broke the previous build. This will only
be set if the last status was Failure or Exception and there
were any modifications.

 When a build breaks all the users who had checked in changes
for that build will be added to this property. If subsequent
users check in changes that do not fix the build then their
names will also be added to this property. However each name
will only appear in the list once.

 Set: this property is set at the start of a build.

 Change: this property is read-only and cannot be changed.

LastBuildStatus The last status from a build that progressed past the get
modifications step.

 Set: this property is set at the start of a build.

 Change: this property should not be modified.

LastIntegration A summary of the last integration. This includes the following
properties:

 Label – the label from the last build.

 Status – the final status of the last build.

 LastSuccessfulIntegrationLabel – the last successful label.
If the previous build failed or had an exception then this
property will be different from Label.

 StartTime – the date and time the last build started.

 FailureUsers – the list of user who had modifications in a
failing build. See FailureUsers in the result for how this
property is populated.

Additionally this property also exposes an IsInitial()
method. This method is used for testing whether this is the first
build for a project.

 This property will only be set if this is not the initial build for a
project (see IsInitial() below).

 Set: this property is loaded automatically when the build is
started.

 Change: this property is read-only and cannot be changed.

LastIntegrationStatus The outcome of the last integration. If the project has
never been built, this will be Unknown.

 Set: this property is loaded automatically when the build is
started.

Customising CruiseControl.NET Page 71

 Change: this property is read-only and cannot be changed.

LastModificationDate The date and time of the last modification. This is only set
if there have been any modifications for the project.

 Set: this property is loaded automatically when the build is
started.

 Change: this property is read-only and cannot be changed.

LastSuccessfulIntegrationLabel The label of the last successful build. If the
previous build failed or had an exception then property will go
back to the last build that was successful. If there are no
successful builds then this property will be undefined.

 Set: this property is loaded automatically when the build is
started.

 Change: this property is read-only and cannot be changed.

LOGGING

The following properties are used in conjunction with the logging:

TaskOutput A string containing the current results for the tasks.

 This property should not be used as it builds the string in
memory. For large results this can result in an out of memory
error!

 Set: this is generated automatically every time the property is
read.

 Change: this property is read-only and cannot be directly
changed.

TaskResults A list of results for the tasks within the build. These results are
then added to the final build log by an xmlLogger task.

 There are also helper methods to simplify adding to this list –
see AddTaskResult() below.

The following helper method is also used to add log results:

AddTaskResult() Used for adding results from a task to the overall results. These
results will later be concatenated into the log file by an
xmlLogger.

 There are two overloads for this method:

 Overload 1

 Inputs

 string result: a string value to add to the results. This will
wrap the value in a DataTaskResult instance.

Customising CruiseControl.NET Page 72

 Overload 2

 Inputs

 ITaskResult result: an ITaskResult instance to add to the
results.

HELPER METHODS

Finally there are a set of helper methods for use with results. These are primarily
designed to simplify working with results in different scenarios (e.g. retrieving
directories, cloning and merging, etc.)

BaseFromArtifactsDirectory() This will take a relative path and offset it from the
artefact directory. If the path is absolute, then the absolute path
will be returned.

 Inputs

 string pathToBase: the path to offset from the artefacts
directory

 Output

 A string containing the full path – either the original path if
absolute or offset from the artefacts directory if relative.

BaseFromWorkingDirectory() This will take a relative path and offset it from the
working directory. If the path is absolute, then the absolute
path will be returned.

 Inputs

 string pathToBase: the path to offset from the working
directory.

 Output

 A string containing the full path – either the original path if
absolute or offset from the working directory if relative.

Clone() Clones the current result. This is typically used by tasks that
contain sub-tasks (e.g. for running multiple tasks in parallel,
etc.)

Merge() Merges a result into another result. This will add all the results
from the source result into the destination and update the
status depending on the source result.

INTEGRATION PROPERTIES

When a build is started a number of “integration” properties are set by the system.
These are typically system generated properties about the build.

The currently defined properties are:

Customising CruiseControl.NET Page 73

Table 2: Integration properties

Property Description

CCNetArtifactDirectory The project artefact directory (as an absolute path).

CCNetBuildCondition The condition used to trigger the build, indicating if the
build was triggered by new modifications or if it was
forced. Valid values are ForceBuild or
IfModificationExists.

CCNetBuildDate The date of the build (in yyyy-MM-dd format).

CCNetBuildTime The time of the start of the build (in HH:mm:ss format).

CCNetFailureUsers The list of users who have contributed modifications to a
sequence of builds that has failed.

CCNetIntegrationStatus The status of the current integration. Could be Success,
Failure, Exception, Unknown or Cancelled.

CCNetLabel The label used to identify the build. This label is
generated during the labeller step.

CCNetLastIntegrationStatus The status of the previous integration. Could be
Success, Failure, Exception, Unknown or Cancelled.

CCNetListenerFile The file used by CCNet to read the progress of external
tools.

CCNetModifyingUsers The list of users who have contributed to the current
build only.

CCNetNumericLabel Contains the label as an integer if conversion is possible,
otherwise zero.

CCNetProject The name of the project that is being integrated.

CCNetProjectUrl The URL where the project is located.

CCNetRequestSource The source of the integration request; this will generally
be the name of the trigger that raised the request.

CCNetUser The user who forced the build. If security is off, or the
build is not forced, then this will not be set.

CCNetWorkingDirectory The project working directory (as an absolute path).

Most of these properties are set when the build is started and cannot be changed.

Customising CruiseControl.NET Page 74

FURTHER INFORMATION

There are a number of sources that can be used for further information.

First and foremost, the code for CruiseControl.NET is freely available from
https://ccnet.svn.sourceforge.net/svnroot/ccnet/trunk. This is a Subversion
repository so a Subversion client can be used to access the code.

A number of people have blogs on CruiseControl.NET, including some of the
developers on the project. Some of these blogs are:

 http://csut017.wordpress.com/ - the blog for the author

 http://rubenwillems.blogspot.com/ - one of the other core developers

 http://treyhutcheson.wordpress.com/ - an older blog, but has a number of
posts on customising CruiseControl.NET

 http://www.stevetrefethen.com/blog/?tag=/Continuous+Integration –
more examples of how to customise CruiseControl.Net, including how to use
it in a non-CI environment

Finally, you can always try the mailing groups for CruiseControl.NET:

 http://groups.google.com/group/ccnet-devel - the developer’s forum

 http://groups.google.com/group/ccnet-user - general user’s form

https://ccnet.svn.sourceforge.net/svnroot/ccnet/trunk
http://csut017.wordpress.com/
http://rubenwillems.blogspot.com/
http://treyhutcheson.wordpress.com/
http://www.stevetrefethen.com/blog/?tag=/Continuous+Integration
http://groups.google.com/group/ccnet-devel
http://groups.google.com/group/ccnet-user

Customising CruiseControl.NET Page 75

APPENDIX 1: VISUAL BASIC EXAMPLES

INTRODUCTION

While all the examples in this document have been in C#, it is possible to write
extensions in any .NET language and Visual Basic is no exception. This appendix has
all of the completed examples written in Visual Basic.

TASKS

DEMOTASK

This example shows the various NetReflector configuration options:

Imports ThoughtWorks.CruiseControl.Core

Imports Exortech.NetReflector

Imports System.Xml

<ReflectorType("demoTask")> Public Class DemoTask

 Implements ITask

 Private myName As String

 <ReflectorProperty("name")> _

 Public Property Name() As String

 Get

 Return myName

 End Get

 Set(ByVal value As String)

 myName = value

 End Set

 End Property

 Private myAuthor As String

 <ReflectorProperty("author", Required:=False)> _

 Public Property Author() As String

 Get

 Return myAuthor

 End Get

 Set(ByVal value As String)

 myAuthor = value

 End Set

 End Property

 Private myAge As Integer

 <ReflectorProperty("age", Required:=False)> _

 Public Property Age() As Integer

 Get

 Return myAge

 End Get

 Set(ByVal value As Integer)

 myAge = value

 End Set

 End Property

 Private myIsNonsense As Boolean

 <ReflectorProperty("isNonsense", Required:=False)> _

 Public Property IsNonsense() As Boolean

 Get

 Return myIsNonsense

Customising CruiseControl.NET Page 76

 End Get

 Set(ByVal value As Boolean)

 myIsNonsense = value

 End Set

 End Property

 Private myInnerItems() As DemoTask

 <ReflectorProperty("items", Required:=False)> _

 Public Property InnerItems() As DemoTask()

 Get

 Return myInnerItems

 End Get

 Set(ByVal value As DemoTask())

 myInnerItems = value

 End Set

 End Property

 Private myChild As DemoTask

 <ReflectorProperty("child", Required:=False,

InstanceType:=GetType(DemoTask))> _

 Public Property Child() As DemoTask

 Get

 Return myChild

 End Get

 Set(ByVal value As DemoTask)

 myChild = value

 End Set

 End Property

 Private myTypedChild As DemoTask

 <ReflectorProperty("typedChild", Required:=False,

InstanceTypeKey:="type")> _

 Public Property TypedChild() As DemoTask

 Get

 Return myTypedChild

 End Get

 Set(ByVal value As DemoTask)

 myTypedChild = value

 End Set

 End Property

 Public Sub Run(ByVal result As IIntegrationResult) _

 Implements ITask.Run

 End Sub

 <ReflectionPreprocessor()> _

 Public Function PreprocessParameters(ByVal typeTable As

NetReflectorTypeTable, _

 ByVal inputNode As XmlNode) As

XmlNode

 Dim dobNode = (From node In inputNode.ChildNodes.OfType(Of

XmlNode)() _

 Where node.Name = "dob" _

 Select node).SingleOrDefault()

 If dobNode IsNot Nothing Then

 Dim dob = CDate(dobNode.InnerText)

 inputNode.RemoveChild(dobNode)

 Dim ageNode = inputNode.OwnerDocument.CreateElement("age")

 ageNode.InnerText = CInt((Date.Now - dob).TotalDays /

365).ToString()

Customising CruiseControl.NET Page 77

 inputNode.AppendChild(ageNode)

 End If

 Return inputNode

 End Function

End Class

Code 54: DemoTask in Visual Basic

HELLOWORLDTASK

This example shows a basic task with validation:

Imports Exortech.NetReflector

Imports ThoughtWorks.CruiseControl.Core

Imports ThoughtWorks.CruiseControl.Core.Config

Imports ThoughtWorks.CruiseControl.Remote

<ReflectorType("helloWorld")> Public Class HelloWorldTask

 Implements ITask, IConfigurationValidation

 Private myPersonsName As String

 <ReflectorProperty("name")> _

 Public Property PersonsName() As String

 Get

 Return myPersonsName

 End Get

 Set(ByVal value As String)

 myPersonsName = value

 End Set

 End Property

 Private myRepeatCount As Integer = 1

 <ReflectorProperty("count", Required:=False)> _

 Public Property RepeatCount() As Integer

 Get

 Return myRepeatCount

 End Get

 Set(ByVal value As Integer)

 myRepeatCount = value

 End Set

 End Property

 Public Sub Run(ByVal result As IIntegrationResult) Implements ITask.Run

 result.BuildProgressInformation() _

 .SignalStartRunTask("Sending a hello world greeting")

 For i = 0 To myRepeatCount

 result.AddTaskResult("Hello " & PersonsName & " from " &

result.ProjectName & _

 "(build started " + result.StartTime.ToString() + ")")

 Next

 result.Status = IntegrationStatus.Success

 End Sub

 Public Sub Validate(ByVal configuration As IConfiguration, _

 ByVal parent As ConfigurationTrace, _

 ByVal errorProcesser As

IConfigurationErrorProcesser) _

 Implements IConfigurationValidation.Validate

 If myRepeatCount <= 0 Then

Customising CruiseControl.NET Page 78

 errorProcesser.ProcessWarning("count is less than 1!")

 End If

 End Sub

End Class

Code 55: HelloWorldTask in Visual Basic

HELLOWORLDTASK2

This example is for a task derived from TaskBase that uses a custom task result:

Imports Exortech.NetReflector

Imports ThoughtWorks.CruiseControl.Core

Imports ThoughtWorks.CruiseControl.Core.Config

Imports ThoughtWorks.CruiseControl.Core.Tasks

Imports ThoughtWorks.CruiseControl.Remote

<ReflectorType("helloWorld2")> Public Class HelloWorldTask2

 Inherits TaskBase

 Implements IConfigurationValidation

 Private myPersonsName As String

 <ReflectorProperty("name")> _

 Public Property PersonsName() As String

 Get

 Return myPersonsName

 End Get

 Set(ByVal value As String)

 myPersonsName = value

 End Set

 End Property

 Private myRepeatCount As Integer = 1

 <ReflectorProperty("count", Required:=False)> _

 Public Property RepeatCount() As Integer

 Get

 Return myRepeatCount

 End Get

 Set(ByVal value As Integer)

 myRepeatCount = value

 End Set

 End Property

 Protected Overrides Function Execute(ByVal result As

IIntegrationResult) As Boolean

 result.BuildProgressInformation() _

 .SignalStartRunTask("Sending a hello world greeting")

 For i = 0 To myRepeatCount

 Dim taskresult = New HelloWorldTaskResult(myPersonsName,

result)

 result.AddTaskResult(taskresult)

 Next

 Return True

 End Function

 Public Sub Validate(ByVal configuration As IConfiguration, _

 ByVal parent As ConfigurationTrace, _

 ByVal errorProcesser As

IConfigurationErrorProcesser) _

Customising CruiseControl.NET Page 79

 Implements IConfigurationValidation.Validate

 If myRepeatCount <= 0 Then

 errorProcesser.ProcessWarning("count is less than 1!")

 End If

 End Sub

End Class

Code 56: HelloWorldTask2 in Visual Basic

Imports ThoughtWorks.CruiseControl.Core

Public Class HelloWorldTaskResult

 Implements ITaskResult

 Private ReadOnly myPersonName As String

 Private ReadOnly myResult As IIntegrationResult

 Public Sub New(ByVal personName As String, ByVal result As

IIntegrationResult)

 myPersonName = personName

 myResult = result

 End Sub

 Public Function CheckIfSuccess() As Boolean _

 Implements ITaskResult.CheckIfSuccess

 Return True

 End Function

 Public ReadOnly Property Data() As String _

 Implements ITaskResult.Data

 Get

 Return "Hello " & myPersonName & _

 " from " & myResult.ProjectName & _

 "(build started " & myResult.StartTime.ToString() & ")"

 End Get

 End Property

End Class

Code 57: HelloWorldTaskResult in Visual Basic

CALLHELLOWORLDTASK

This example shows how to call an external application via the BaseExecutableTask
class:

Imports System.Diagnostics

Imports Exortech.NetReflector

Imports ThoughtWorks.CruiseControl.Core

Imports ThoughtWorks.CruiseControl.Core.Tasks

Public Class CallHelloWorldTask

 Inherits BaseExecutableTask

 Private myPersonsName As String

 <ReflectorProperty("name")> _

 Public Property PersonsName() As String

 Get

 Return myPersonsName

 End Get

 Set(ByVal value As String)

 myPersonsName = value

 End Set

Customising CruiseControl.NET Page 80

 End Property

 Private myExecutable As String

 <ReflectorProperty("executable")> _

 Public Property Executable() As String

 Get

 Return myExecutable

 End Get

 Set(ByVal value As String)

 myExecutable = value

 End Set

 End Property

 Protected Overrides Function Execute(ByVal result As

IIntegrationResult) As Boolean

 Dim processResult = TryToRun(CreateProcessInfo(result), result)

 result.AddTaskResult(New ProcessTaskResult(processResult))

 Return Not processResult.Failed

 End Function

 Protected Overrides Function GetProcessArguments(ByVal result As

IIntegrationResult) As String

 Return """" & myPersonsName & """"

 End Function

 Protected Overrides Function GetProcessBaseDirectory(ByVal result As

IIntegrationResult) As String

 Return result.WorkingDirectory

 End Function

 Protected Overrides Function GetProcessFilename() As String

 If String.IsNullOrEmpty(myExecutable) Then

 Return "HelloWorldApp"

 Else

 Return myExecutable

 End If

 End Function

 Protected Overrides Function GetProcessPriorityClass() As

ProcessPriorityClass

 Return ProcessPriorityClass.Normal

 End Function

 Protected Overrides Function GetProcessTimeout() As Integer

 Return 300

 End Function

End Class

Code 58: CallHelloWorldTask in Visual Basic

TRIGGERS

FILECHANGEDTRIGGER

This example shows a trigger that monitors a file, but only fires after the inner
trigger has fired:

Imports System

Imports System.IO

Imports Exortech.NetReflector

Customising CruiseControl.NET Page 81

Imports ThoughtWorks.CruiseControl.Core

Imports ThoughtWorks.CruiseControl.Core.Config

Imports ThoughtWorks.CruiseControl.Core.Triggers

Imports ThoughtWorks.CruiseControl.Remote

<ReflectorType("fileChangedTrigger")> Public Class FileChangedTrigger

 Implements ITrigger, IConfigurationValidation

 Private myLastChanged As DateTime?

 Public Sub New()

 BuildCondition = BuildCondition.IfModificationExists

 Dim defaultTrigger = New IntervalTrigger()

 defaultTrigger.IntervalSeconds = 5

 InnerTrigger = defaultTrigger

 End Sub

 Private myMonitorFile As String

 <ReflectorProperty("file")> _

 Public Property MonitorFile() As String

 Get

 Return myMonitorFile

 End Get

 Set(ByVal value As String)

 myMonitorFile = value

 End Set

 End Property

 Private myBuildCondition As BuildCondition

 <ReflectorProperty("buildCondition", Required:=False)> _

 Public Property BuildCondition() As BuildCondition

 Get

 Return myBuildCondition

 End Get

 Set(ByVal value As BuildCondition)

 myBuildCondition = value

 End Set

 End Property

 Private myInnerTrigger As ITrigger

 <ReflectorProperty("trigger", InstanceTypeKey:="type",

Required:=False)> _

 Public Property InnerTrigger() As ITrigger

 Get

 Return myInnerTrigger

 End Get

 Set(ByVal value As ITrigger)

 myInnerTrigger = value

 End Set

 End Property

 Public Function Fire() As IntegrationRequest Implements ITrigger.Fire

 Dim request As IntegrationRequest = Nothing

 If myLastChanged.HasValue Then

 If myInnerTrigger.Fire() IsNot Nothing Then

 Dim changeTime = File.GetLastWriteTime(MonitorFile)

 If (changeTime > myLastChanged.Value) Then

 request = New IntegrationRequest(BuildCondition, _

 Me.GetType().Name, _

 Nothing)

 myLastChanged = changeTime

Customising CruiseControl.NET Page 82

 End If

 End If

 Else

 myLastChanged = File.GetLastWriteTime(MonitorFile)

 End If

 Return request

 End Function

 Public Sub IntegrationCompleted() Implements

ITrigger.IntegrationCompleted

 InnerTrigger.IntegrationCompleted()

 myLastChanged = File.GetLastWriteTime(MonitorFile)

 End Sub

 Public ReadOnly Property NextBuild() As Date Implements

ITrigger.NextBuild

 Get

 Return DateTime.MaxValue

 End Get

 End Property

 Public Sub Validate(ByVal configuration As IConfiguration, _

 ByVal parent As ConfigurationTrace, _

 ByVal errorProcesser As

IConfigurationErrorProcesser) _

 Implements IConfigurationValidation.Validate

 If (String.IsNullOrEmpty(myMonitorFile)) Then

 errorProcesser.ProcessError("File cannot be empty")

 ElseIf (Not File.Exists(MonitorFile)) Then

 errorProcesser.ProcessWarning("File '" & MonitorFile & "' does

not exist")

 End If

 End Sub

End Class

Code 59: FileChangedTrigger in Visual Basic

SOURCE CONTROL BLOCKS

NEWFILESYSTEMSOURCECONTROL

This example is for a simple source control block that monitors a file directory:

Imports System

Imports System.Collections.Generic

Imports System.IO

Imports Exortech.NetReflector

Imports ThoughtWorks.CruiseControl.Core

<ReflectorType("fileSystemSource")> Public Class NewFileSystemSourceControl

 Implements ISourceControl

 Private myFiles As Dictionary(Of String, Date) = New Dictionary(Of

String, Date)()

 Private myDirectoryName As String

 <ReflectorProperty("directory")> _

 Public Property DirectoryName() As String

 Get

 Return myDirectoryName

 End Get

Customising CruiseControl.NET Page 83

 Set(ByVal value As String)

 myDirectoryName = value

 End Set

 End Property

 Public Function GetModifications(ByVal from As IIntegrationResult, _

 ByVal [to] As IIntegrationResult) As

Modification() _

 Implements

ISourceControl.GetModifications

 Dim newList = New Dictionary(Of String, DateTime)()

 Dim modifications = New List(Of Modification)()

 Dim directory = New DirectoryInfo(DirectoryName)

 Dim newFiles = directory.GetFiles()

 For Each file In newFiles

 Dim inList = myFiles.ContainsKey(file.FullName)

 If (Not inList Or (myFiles(file.FullName) <

file.LastWriteTime)) Then

 newList.Add(file.FullName, file.LastWriteTime)

 Dim newModification = New Modification()

 newModification.FileName = file.Name

 newModification.ModifiedTime = file.LastWriteTime

 newModification.FolderName = file.DirectoryName

 If inList Then

 newModification.Type = "Added"

 Else

 newModification.Type = "Modified"

 End If

 modifications.Add(newModification)

 End If

 If (inList) Then

 myFiles.Remove(file.Name)

 End If

 Next

 For Each file In myFiles.Keys

 Dim oldModification = New Modification()

 oldModification.FileName = Path.GetFileName(file)

 oldModification.ModifiedTime = Date.Now

 oldModification.FolderName = Path.GetDirectoryName(file)

 oldModification.Type = "Deleted"

 modifications.Add(oldModification)

 Next

 myFiles = newList

 Return modifications.ToArray()

 End Function

 Public Sub GetSource(ByVal result As IIntegrationResult) _

 Implements ISourceControl.GetSource

 For Each Modification In result.Modifications

 Dim source = Path.Combine(Modification.FolderName, _

 Modification.FileName)

 Dim destination =

result.BaseFromWorkingDirectory(Modification.FileName)

 If (File.Exists(source)) Then

 File.Copy(source, destination, True)

 Else

 File.Delete(destination)

Customising CruiseControl.NET Page 84

 End If

 Next

 End Sub

 Public Sub Initialize(ByVal project As IProject) _

 Implements ISourceControl.Initialize

 End Sub

 Public Sub LabelSourceControl(ByVal result As IIntegrationResult) _

 Implements ISourceControl.LabelSourceControl

 Dim fileName = Path.Combine(myDirectoryName, _

 Date.Now.ToString("yyyyMMddHHmmss") &

".label")

 File.WriteAllText(fileName, result.Label)

 myFiles.Add(fileName, DateTime.Now)

 End Sub

 Public Sub Purge(ByVal project As IProject) _

 Implements ISourceControl.Purge

 End Sub

End Class

Code 60: NewFileSystemSourceControl in Visual Basic

INDEXFILESOURCECONTROL

This example shows how to build a source control block that uses an history parser:

Imports System

Imports System.IO

Imports Exortech.NetReflector

Imports ThoughtWorks.CruiseControl.Core

<ReflectorType("indexFileSource")> Public Class IndexFileSourceControl

 Implements ISourceControl

 Private myFileName As String

 <ReflectorProperty("file")> _

 Public Property FileName() As String

 Get

 Return myFileName

 End Get

 Set(ByVal value As String)

 myFileName = value

 End Set

 End Property

 Public Function GetModifications(ByVal from As IIntegrationResult, _

 ByVal [to] As IIntegrationResult) As

Modification() _

 Implements

ISourceControl.GetModifications

 Dim path = [to].BaseFromWorkingDirectory(FileName)

 Dim reader = New StreamReader(path)

 Try

 Dim parser = New IndexFileHistoryParser()

 Return parser.Parse(reader, from.StartTime, [to].StartTime)

 Finally

 reader.Dispose()

 End Try

Customising CruiseControl.NET Page 85

 End Function

 Public Sub GetSource(ByVal result As IIntegrationResult) _

 Implements ISourceControl.GetSource

 End Sub

 Public Sub Initialize(ByVal project As IProject) _

 Implements ISourceControl.Initialize

 End Sub

 Public Sub LabelSourceControl(ByVal result As IIntegrationResult) _

 Implements ISourceControl.LabelSourceControl

 End Sub

 Public Sub Purge(ByVal project As IProject) _

 Implements ISourceControl.Purge

 End Sub

End Class

Code 61: IndexFileSourceControl in Visual Basic

Imports System

Imports System.Collections.Generic

Imports System.IO

Imports System.Xml.Linq

Imports ThoughtWorks.CruiseControl.Core

Imports ThoughtWorks.CruiseControl.Core.Sourcecontrol

Public Class IndexFileHistoryParser

 Implements IHistoryParser

 Public Function Parse(ByVal history As TextReader, _

 ByVal from As Date, ByVal [to] As Date) As

Modification() _

 Implements IHistoryParser.Parse

 Dim modifications = New List(Of Modification)()

 Dim document = XDocument.Load(history)

 Dim fromDate = from.ToString("s")

 Dim toDate = [to].ToString("s")

 For Each change As XElement In document.Descendants("change")

 Dim changeDate = DateTime.Parse(change.Attribute("date").Value)

 If (changeDate >= from) And (changeDate <= [to]) Then

 Dim newModification = New Modification()

 newModification.FileName = change.Attribute("file").Value

 newModification.ModifiedTime = changeDate

 newModification.FolderName =

change.Attribute("folder").Value

 newModification.Type = change.Attribute("type").Value

 modifications.Add(newModification)

 End If

 Next

 Return modifications.ToArray()

 End Function

End Class

Code 62: IndexFileHistoryParser in Visual Basic

Customising CruiseControl.NET Page 86

GETMYCODESOURCECONTROL

This example show calling an external application in a source control block:

Imports Exortech.NetReflector

Imports ThoughtWorks.CruiseControl.Core

Imports ThoughtWorks.CruiseControl.Core.Sourcecontrol

Imports ThoughtWorks.CruiseControl.Core.Tasks

Imports ThoughtWorks.CruiseControl.Core.Util

<ReflectorType("getMyCode")> Public Class GetMyCodeSourceControl

 Inherits ProcessSourceControl

 Public Sub New()

 Me.new(New ProcessExecutor(), New IndexFileHistoryParser())

 End Sub

 Public Sub New(ByVal executor As ProcessExecutor, _

 ByVal parser As IHistoryParser)

 MyBase.New(parser, executor)

 End Sub

 Private myExecutable As String

 <ReflectorProperty("executable", Required:=False)> _

 Public Property Executable() As String

 Get

 Return myExecutable

 End Get

 Set(ByVal value As String)

 myExecutable = value

 End Set

 End Property

 Private mySource As String

 <ReflectorProperty("source")> _

 Public Property Source() As String

 Get

 Return mySource

 End Get

 Set(ByVal value As String)

 mySource = value

 End Set

 End Property

 Public Overloads Overrides Function GetModifications(ByVal from As

IIntegrationResult, _

 ByVal [to] As

IIntegrationResult) As Modification()

 Dim processResult = ExecuteCommand([to], "list")

 Dim modifications = ParseModifications(processResult, _

 from.StartTime, [to].StartTime)

 Return modifications

 End Function

 Public Overrides Sub LabelSourceControl(ByVal result As

IIntegrationResult)

 If result.Succeeded Then

 Dim processResult = ExecuteCommand(result, "label",

result.Label)

 result.AddTaskResult(New ProcessTaskResult(processResult))

 End If

 End Sub

Customising CruiseControl.NET Page 87

 Public Overrides Sub GetSource(ByVal result As IIntegrationResult)

 Dim processResult = ExecuteCommand(result, "get")

 result.AddTaskResult(New ProcessTaskResult(processResult))

 End Sub

 Private Function ExecuteCommand(ByVal result As IIntegrationResult, _

 ByVal command As String, Optional ByVal arg As String =

Nothing)

 Dim buffer = New PrivateArguments(command)

 buffer.Add(Source)

 If arg IsNot Nothing Then

 buffer.Add(String.Empty, arg, True)

 End If

 Dim executable As String

 If String.IsNullOrEmpty(myExecutable) Then

 executable = "GetMyCode"

 Else

 executable = myExecutable

 End If

 Dim processInfo = New ProcessInfo(_

 result.BaseFromWorkingDirectory(executable), _

 buffer, _

 result.WorkingDirectory)

 Dim processResult = Execute(processInfo)

 Return processResult

 End Function

End Class

Code 63: ProcessSourceControl in Visual Basic

LABELLERS

RANDOMLABELLER

This example shows the basics of implementing a labeller:

Imports System

Imports Exortech.NetReflector

Imports ThoughtWorks.CruiseControl.Core

Imports ThoughtWorks.CruiseControl.Core.Config

<ReflectorType("randomLabeller")> Public Class RandomLabeller

 Implements ILabeller, IConfigurationValidation

 Public Sub New()

 myMaximumValue = Integer.MaxValue

 End Sub

 Private myMaximumValue As Integer

 <ReflectorProperty("max", Required:=False)> _

 Public Property MaximumValue() As Integer

 Get

 Return myMaximumValue

 End Get

 Set(ByVal value As Integer)

 myMaximumValue = value

 End Set

 End Property

 Public Function Generate(ByVal integrationResult As IIntegrationResult)

As String _

Customising CruiseControl.NET Page 88

 Implements ILabeller.Generate

 Dim rand = New Random()

 Dim label = rand.Next(myMaximumValue).ToString()

 Return label

 End Function

 Public Sub Run(ByVal result As IIntegrationResult) _

 Implements ThoughtWorks.CruiseControl.Core.ITask.Run

 result.Label = Generate(result)

 End Sub

 Public Sub Validate(ByVal configuration As IConfiguration, _

 ByVal parent As ConfigurationTrace, _

 ByVal errorProcesser As

IConfigurationErrorProcesser) _

 Implements IConfigurationValidation.Validate

 If myMaximumValue <= 0 Then

 errorProcesser.ProcessError(_

 "The maximum value must be greater than zero")

 End If

 End Sub

End Class

Code 64: RandomLabeller in Visual Basic

RANDOMLABELLER2

This examples shows the basics of implementing a labeller from LabellerBase:

Imports System

Imports Exortech.NetReflector

Imports ThoughtWorks.CruiseControl.Core

Imports ThoughtWorks.CruiseControl.Core.Config

Imports ThoughtWorks.CruiseControl.Core.Label

<ReflectorType("randomLabeller2")> Public Class RandomLabeller2

 Inherits LabellerBase

 Implements IConfigurationValidation

 Public Sub New()

 myMaximumValue = Integer.MaxValue

 End Sub

 Private myMaximumValue As Integer

 <ReflectorProperty("max", Required:=False)> _

 Public Property MaximumValue() As Integer

 Get

 Return myMaximumValue

 End Get

 Set(ByVal value As Integer)

 myMaximumValue = value

 End Set

 End Property

 Public Overrides Function Generate(ByVal integrationResult As

IIntegrationResult) As String

 Dim rand = New Random()

 Dim label = rand.Next(myMaximumValue).ToString()

 Return label

 End Function

 Public Sub Validate(ByVal configuration As IConfiguration, _

Customising CruiseControl.NET Page 89

 ByVal parent As ConfigurationTrace, _

 ByVal errorProcesser As

IConfigurationErrorProcesser) _

 Implements IConfigurationValidation.Validate

 If myMaximumValue <= 0 Then

 errorProcesser.ProcessError(_

 "The maximum value must be greater than zero")

 End If

 End Sub

End Class

Code 65: RandomLabeller2 in Visual Basic

STATE MANAGERS

PLAINTEXTSTATEMANAGER

This examples shows how to implement a state manager that stores the state as plain
text (one line per item):

Imports System

Imports System.IO

Imports Exortech.NetReflector

Imports ThoughtWorks.CruiseControl.Core

Imports ThoughtWorks.CruiseControl.Core.State

Imports ThoughtWorks.CruiseControl.Core.Util

Imports ThoughtWorks.CruiseControl.Remote

<ReflectorType("plainTextState")> Public Class PlainTextStateManager

 Implements IStateManager

 Private ReadOnly myFileSystem As IFileSystem

 Public Sub New()

 Me.New(New SystemIoFileSystem())

 End Sub

 Public Sub New(ByVal fileSystem As IFileSystem)

 myFileSystem = fileSystem

 End Sub

 Public Function HasPreviousState(ByVal project As String) As Boolean _

 Implements IStateManager.HasPreviousState

 Dim filePath = GeneratePath(project)

 Return myFileSystem.FileExists(filePath)

 End Function

 Public Function LoadState(ByVal project As String) As

IIntegrationResult _

 Implements IStateManager.LoadState

 Dim filePath = GeneratePath(project)

 Dim reader = New

StreamReader(myFileSystem.OpenInputStream(filePath))

 Try

 Dim statusType = GetType(IntegrationStatus)

 Dim status = CType([Enum].Parse(statusType, reader.ReadLine()),

IntegrationStatus)

 Dim lastSummary = New IntegrationSummary(status, _

 reader.ReadLine(), _

 reader.ReadLine(), _

 DateTime.Parse(reader.ReadLine()))

Customising CruiseControl.NET Page 90

 Dim result = New IntegrationResult(project, _

 reader.ReadLine(), _

 reader.ReadLine(), _

 Nothing, _

 lastSummary)

 Return result

 Finally

 reader.Dispose()

 End Try

 End Function

 Public Sub SaveState(ByVal result As IIntegrationResult) _

 Implements IStateManager.SaveState

 Dim filePath = GeneratePath(result.ProjectName)

 Dim writer = New

StreamWriter(myFileSystem.OpenOutputStream(filePath))

 Try

 writer.WriteLine(result.Status)

 writer.WriteLine(result.Label)

 writer.WriteLine(result.LastSuccessfulIntegrationLabel)

 writer.WriteLine(result.StartTime.ToString("o"))

 writer.WriteLine(result.WorkingDirectory)

 writer.WriteLine(result.ArtifactDirectory)

 Finally

 writer.Dispose()

 End Try

 End Sub

 Private Function GeneratePath(ByVal project As String) As String

 Dim filePath = Path.Combine(Environment.CurrentDirectory, project +

".txt")

 Return filePath

 End Function

End Class

Code 66: PlainTextStateManager in Visual Basic

SERVER EXTENSIONS

This example shows how to build a server extension that limits the number of
concurrent projects:

Imports System

Imports System.Linq

Imports ThoughtWorks.CruiseControl.Remote

Imports ThoughtWorks.CruiseControl.Remote.Events

Public Class DoSomething

 Implements ICruiseServerExtension

 Private myServer As ICruiseServer

 Private myCount As Integer = 0

 Private myMaxCount As Integer = 4

 Public Sub Abort() _

 Implements ICruiseServerExtension.Abort

 Console.WriteLine("Abort")

 End Sub

 Public Sub Initialise(ByVal server As ICruiseServer, _

 ByVal extensionConfig As ExtensionConfiguration)

_

Customising CruiseControl.NET Page 91

 Implements ICruiseServerExtension.Initialise

 Dim projectsElement = extensionConfig.Items _

 .SingleOrDefault(Function(n) n.Name = "allowedProjects")

 If projectsElement IsNot Nothing Then

 myMaxCount = Integer.Parse(projectsElement.InnerText) - 1

 End If

 myServer = server

 AddHandler myServer.ProjectStarting, AddressOf Project_Starting

 AddHandler myServer.ProjectStopped, AddressOf Project_Stopped

 Console.WriteLine("Initialise")

 End Sub

 Private Sub Project_Starting(ByVal sender As Object, ByVal e As

CancelProjectEventArgs)

 If myCount >= myMaxCount Then

 e.Cancel = True

 Else

 myCount += 1

 End If

 End Sub

 Private Sub Project_Stopped(ByVal sender As Object, ByVal e As

ProjectEventArgs)

 myCount -= 1

 End Sub

 Public Sub Start() _

 Implements ICruiseServerExtension.Start

 Console.WriteLine("Start")

 End Sub

 Public Sub [Stop]() _

 Implements ICruiseServerExtension.Stop

 Console.WriteLine("Stop")

 End Sub

End Class

Code 67: DoSomething extension in Visual Basic

Note: this will also require a change to the configuration to point to the correct name
of the extension.

	Introduction
	What is CruiseControl.NET?
	What Does This Document Cover?
	Versions
	About the Author

	Overview
	The Big Picture
	The Server
	The Project
	Loading
	Build Sequence

	The Dashboard
	The Libraries

	Project Item Basics
	Required Libraries
	Assembly Name
	NetReflector
	Basics
	Attribute Usage
	Configuration Options
	Pre-processing

	Tasks/Publishers
	Overview
	Historical Note
	The Basics
	Getting Information
	Returning Results
	Passing Configuration Options
	Build Progress Information
	Additional Interfaces
	Base Classes
	Advanced Results
	Executing External Applications

	Triggers
	Overview
	The Basics
	Basic Example
	Passing Configuration Options
	Post Build Processing
	Validating the Configuration
	Nested Triggers

	Source Control Blocks
	Overview
	The Basics
	A Basic Source Control Block
	To and From Results
	Passing Data Between Calls
	Parsers
	Abstract Base Classes

	Labellers
	Overview
	The Basics
	Basic Example
	Additional Interfaces
	A Common Base

	State Managers
	Overview
	The Basics
	Basic Example
	More Details

	Server Extensions
	Overview
	The Basics
	Configuring an Extension
	Handling Events
	Passing Configuration

	Common Components
	IIntegrationResult: Integration Results
	Project and Build Information
	Status Information
	Modifications
	Historical Information
	Logging
	Helper Methods

	Integration Properties

	Further Information
	Appendix 1: Visual Basic Examples
	Introduction
	Tasks
	DemoTask
	HelloWorldTask
	HelloWorldTask2
	CallHelloWorldTask

	Triggers
	FileChangedTrigger

	Source Control Blocks
	NewFileSystemSourceControl
	IndexFileSourceControl
	GetMyCodeSourceControl

	Labellers
	RandomLabeller
	RandomLabeller2

	State Managers
	PlainTextStateManager

	Server Extensions

